
CSOD: Context-Sensitive Overflow Detection
Hongyu Liu∗, Sam Silvestro†, Xiaoyin Wang‡, Lide Duan§, and Tongping Liu¶

University of Texas at San Antonio, United States
∗liuhyscc@gmail.com, †Sam.Silvestro@utsa.edu, ‡Xiaoyin.Wang@utsa.edu,

§Lide.Duan@utsa.edu, ¶Tongping.Liu@utsa.edu

Abstract—Buffer overflow is possibly the most well-known
memory issue. It can cause erratic program behavior, such as
incorrect outputs and crashes, and can be exploited to issue
security attacks. Detecting buffer overflows has drawn signifi-
cant research attention for almost three decades. However, the
prevalence of security attacks due to buffer overflows indicates
that existing tools are still not widely utilized in production
environments, possibly due to their high performance overhead
or limited effectiveness.

This paper proposes CSOD, a buffer overflow detection tool
designed for the production environment. CSOD proposes a novel
context-sensitive overflow detection technique that can dynami-
cally adjust its detection strategy based on the behavior of dif-
ferent allocation calling contexts, enabling it to effectively detect
overflows in millions of objects via four hardware watchpoints.
It can correctly report root causes of buffer over-writes and over-
reads, without any additional manual effort. Furthermore, CSOD
only introduces 6.7% performance overhead on average, which
makes it appealing as an always-on approach for production
software.

Index Terms—Overflow Detection, Memory Safety, Memory
Vulnerabilities

I. INTRODUCTION

Buffer overflow is an important class of memory bugs in
C/C++ programs. Buffer overflows not only cause erratic
program behavior, but also can be exploited for security attacks,
such as data corruption, control-flow hijack, and information
leakage [55]. For instance, the Heartbleed bug, a buffer over-
read problem in the OpenSSL cryptography library, affected
more than half-a-million Internet servers, resulting in the
leakage of sensitive private data [2]. Despite various detection
techniques, buffer overflows still widely exist in different in-
production applications [40].

Buffer overflows are especially hard to be expunged during
development phases, since many of them are only triggered
with specific inputs, which are likely to be neglected in testing.
On the other hand, static detection tools may generate numerous
false positives, or have scalability issues for large programs [56],
which significantly limits their adoption. Additionally, the
pervasive use of multi-threaded programs imposes additional
challenges for testing: it is even impossible to find all bugs
that can be triggered by a single input, since some bugs are
only exposed in one particular interleaving, and the number
of interleavings is exponentially proportional to the number of
statements [33]. Therefore, many bugs are inevitably leaked to
the deployed environment, and there is a strong demand for
tools that can detect buffer overflows in the production setting.

Unfortunately, existing dynamic detection tools often impose
significant performance overhead that prevents their adoption
in the production environment [15]. They typically perform
bounds-checking at every memory access by invoking functions
instrumented using different instrumentation techniques, such
as dynamic instrumentation [42], [10], [23], [25], [46] or static
instrumentation [49], [5], [21], [22], [41], [47], [52], [54].
Typically, Valgrind or Dr. Memory impose more than 10×
performance overhead [42], [10]. AddressSanitizer, referred
to as ASan in the remainder of this paper, is the state-
of-the-art of this type, which still incurs more than 39%
performance overhead despite many optimizations, such as
static analysis, efficient shadow mapping, and encoding [52].
Additionally, ASan only detects problems caused by instru-
mented components, while skipping those caused by many
non-instrumented libraries. Some detection tools introduce low
runtime overhead, but with their own issues. DoubleTake [32]
and iReplayer [31] only detect buffer over-writes due to
their evidence-based mechanism, while leaving over-reads
undetectable, e.g. Heartbleed [2], [17]. Control-Flow Integrity
(CFI) can only detect overflows that cause unexpected execution
flow, omitting buffer over-reads and overwrites that do not alter
the flow [4]. Boud employs hardware watchpoints to achieve
its low overhead, but only focuses on a small number of arrays
within loops that are explicitly instrumented in the compilation
phase [15].

In this paper, we propose a tool, called CSOD, that detects
overflows using hardware watchpoints, but without the require-
ment of explicit instrumentation. CSOD places watchpoints just
at the boundary of heap objects in order to detect all out-
of-bounds reads and writes. The use of watchpoints balances
overhead and effectiveness: (1) it can detect both read-based
and write-based overflows; (2) A watchpoint is only fired when
the watched address is accessed, thus it can report the precise
calling context of an overflow, and will never report false
alarms; (3) It does not impose additional runtime overhead,
when there is no overflow.

However, there is a technical challenge caused by the limited
number of hardware watchpoints, since there are only four
available [60]. CSOD further proposes a novel calling-context-
based detection due to the following key observation: heap
objects with the same allocation calling context typically have
the same access behavior, determined by the program logic.
That is, a heap object accessed by given statements, and/or
whether it has an overflow, is already determined by the
program itself. Based on this insight, CSOD significantly reduces

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

50

its focus to the number of different allocation calling contexts
inside a program, instead of a much larger number of heap
objects. However, the number of active calling contexts can still
be much larger than the number of watchpoints. CSOD further
dynamically adjusts its strategy of placing watchpoints based
on the monitored behavior: (1) an object whose calling context
has a larger number of allocations will have a lower probability
to be selected. This strategy ensures that each calling context
may have a similar chance of being sampled. Also, this strategy
favors objects from a calling context with fewer allocations,
which shares a similar insight as existing work, e.g. SWAT [24],
in that objects from a calling context with fewer allocations
may have a higher chance of containing latent bugs. (2) CSOD
decreases the possibility of watching objects from a calling
context, if objects sharing this calling context were watched
before but without observing overflows. More details are further
discussed in Section III-B2.

Based on our evaluation of nine known bugs, including
large programs with millions of lines of code (e.g. MySQL),
CSOD successfully detected all overflows within few executions.
For each execution, CSOD has a detection probability between
10% and 100%, with 58% on average. Note that although
CSOD may miss a particular bug in a certain execution, it
will catch this bug eventually with a sufficient number of
executions. It is particularly suitable for the crowdsourcing
or cloud environments, where a program will be executed
repeatedly by a large number of users. Meanwhile, it only
introduces 6.7% performance overhead on average, which is
efficient enough to be employed in production environments.
CSOD does not require any manual effort from users, and can
report root causes of overflows without incurring any false
alarms. Therefore, programmers can quickly identify problems
based on the precise and accurate reports of CSOD, without
the need for further confirmations. Overall, CSOD provides the
following contributions:

• CSOD proposes a novel context-sensitive method to detect
heap overflows with hardware watchpoints. This tool
balances performance and effectiveness, and can be
employed in production environments.

• Our extensive experiments confirm that CSOD detects
overflows with a probability of 58% on average, with
around 6.7% performance overhead.

The remainder of this paper is organized as follows. Sec-
tion II first describes the background of watchpoints and the
basic idea of CSOD. The detailed implementation is described
in Section III. After that, an evidence-based optimization is
further introduced in Section IV. Then, we evaluate CSOD in
Section V, and discuss CSOD’s weaknesses in Section VI. In
the end, Section VII discusses related work, and Section VIII
concludes the paper.

II. OVERVIEW

This section first introduces the background of hardware
watchpoints, then describes the basic idea of CSOD.

A. Background of Watchpoints

Watchpoints, also known as “data points” [18] or “debug
registers” [60], were designed for debugging purposes. Intel-
based systems only support six debug registers. However, only
four can be utilized to watch different linear addresses [60],
while the remaining two are utilized to control debugging
features or obtain the status. Watchpoints can be installed
via system calls. Traditionally, ptrace is used to install
them within the user space [27]. However, a separate process
should be created for ptrace to install watchpoints, which
incurs significant performance overhead due to communication
between processes. Fortunately, Linux has another system call,
perf_event_open, which allows installation within the same
process [59].

B. Basic Idea of CSOD

Figure 1 shows the overview of CSOD. CSOD is a drop-in
library that can be linked to applications via the “rdynamic”
compilation flag or be preloaded by setting the LD_PRELOAD
environment variable. CSOD includes six components: the
Alloc/Dealloc Monitoring Unit, Sampling Management Unit,
Watchpoint Management Unit, Signal Handling Unit, Termi-
nation Handling Unit, and Canary Management Unit. Among
them, the last two components are only used for the evidence-
based approach.
CSOD intercepts allocations and deallocations of applications

via its Alloc/Dealloc Monitoring Unit. Upon every allocation,
CSOD first contacts its Sampling Management Unit to determine
whether to monitor this newly allocated object. If yes, CSOD
relies on its Watchpoint Management Unit to choose one out
of the four watchpoints, and installs it at the boundary of this
object, as shown in Figure 2. Otherwise, CSOD simply updates
the number of allocations, and adjusts the probability of the
current calling context. After the installation, any memory
read/write access on the watched linear addresses will trigger a
SIGT RAP signal, which will be handled by the Signal Handling
Unit. Inside the handler, CSOD reports the statement and its
full calling context to the user. In addition, CSOD also reports
the allocation calling context of the overflowing object, which
can be obtained from the Watchpoint Management Unit. Upon
each deallocation, CSOD checks whether this object is currently
being watched. If so, CSOD removes the watchpoint on its
corresponding address. Otherwise, CSOD does nothing upon
deallocations.

III. IMPLEMENTATION DETAILS

This section describes the detailed implementation of CSOD’s
major components that are shown in Figure 1.

A. Alloc/Dealloc Monitoring Unit

CSOD intercepts allocation and deallocation routines of
applications, such as malloc() and free(), and handles
them as follows. The interception is achieved by preloading
memory allocation and deallocation routines, without the need
to recompile or change applications manually.

51

	Sampling	
Management	

Signal	
Handler	

Alloc/Dealloc	
Monitoring	

Watchpoint	
Management	

Canary	
Management	

CSOD	Runtime	

Applications	
Link	

Report	Termination	
Handling	

Fig. 1. Overview of CSOD

Canary	Object	

Watchpoint	

Fig. 2. Installation of watchpoints

1) Allocation: Upon every allocation, CSOD determines
whether to install a watchpoint on this object. It first obtains
the calling context of the current allocation, then obtains the
probability of monitoring the current calling context from the
Sampling Management Unit. After that, it determines whether
a watchpoint should be installed on this object based on the
probability and a randomly-generated number. For instance,
given a probability of 10%, if a random number modulo 100
is less than 10, CSOD will install a watchpoint for this object,
where the watchpoint is chosen via the replacement policy
described in Section III-C2. Otherwise, this object will not be
watched.

Identification of the calling context: Upon each allocation,
CSOD obtains the calling context and requests its probability
from the Sampling Management Unit, which is maintained in a
hash table. However, obtaining and comparing the entire calling
context is very expensive, especially for applications with a
large number of allocations. CSOD utilizes the combination of
the first level calling context above the CSOD library, e.g. the
statement invoking the memory allocation, and the stack offset
as the identifier of the calling context. If applications are com-
piled with the -fno-omit-frame-pointer flag, CSOD utilizes
the built-in functions (e.g. __builtin_return_address) to
obtain the next level of calling context above CSOD, instead
of using the expensive backtrace function. Also, CSOD only
acquires the whole calling context for the first time, with the use
of the expensive backtrace function, when the combination
cannot be found in the hash table. To our understanding, the
chance that different calling contexts will have the same first-
level calling context and stack offset will be extremely low,
if not completely impossible. Furthermore, even if the first
level calling context and the stack offset are the same as an
existing one, this will not affect the detection correctness: CSOD
can still correctly report the full calling context of a failure,
since it only reports the context upon failure. However, CSOD

may treat two different contexts as the same, which may affect
the sampling probability. Also, CSOD may report the allocation
calling context incorrectly.

Random number generator: The random number generator
may significantly affect performance, since the generator is
invoked upon every allocation. CSOD ports the random generator
from OpenBSD’s memory allocator, but changes it to support
per-thread generation [37]. Currently, both OpenBSD and
the rand function of glibc only support a global generator
shared by multiple threads, and which further utilize a global
lock to prevent race conditions, unnecessarily degrading the
performance of multithreaded applications.

2) Deallocation: Upon every deallocation, CSOD checks
whether the current object is being watched. If yes, the
corresponding watchpoint will be removed. The detailed
implementation for disabling watchpoints is discussed in
Section III-C. Otherwise, no action will be required.

B. Sampling Management Unit

The Sampling Management Unit is an important component
of CSOD, as it is responsible for adjusting the probabilities of
different allocation calling contexts, based on the number of
allocations and the watched times. It provides service to the
Alloc/Dealloc Monitoring Unit and the Canary Management
Unit.

1) Maintaining Probabilities for Calling Contexts: CSOD
utilizes a global hash table to track the probabilities of different
allocation calling contexts. As discussed above, the hash table
utilizes the combination of two values as the key, the first-
level calling context and the stack offset of the allocation. The
size of the hash table is set to a large number to reduce hash
conflicts. For all contexts that hash to the same value, a linked
list is utilized to track these contexts, which has its own lock
to guarantee correctness. Due to the fact that most applications
may not have an excessive amount of distinct calling contexts,
the hash table is expected to have very few conflicts, although
at the cost of memory consumption.

2) Adaptively Adjusting Probability: As described above,
the most critical challenge is to employ four watchpoints to
effectively watch targets from thousands or millions of active
heap objects. CSOD designs its sampling algorithms based on
the calling contexts.

In CSOD, every calling context will be assigned a probability
of 50% initially. This indicates that the calling context, without
having been previously observed, is treated by CSOD as if it

52

were equally likely to either contain a bug or be bug-free.
CSOD utilizes the following methods to adaptively adjust the
probability for every calling context.

• Degradation on each allocation: After every allocation,
regardless of whether the object is being watched, the
probability of the calling context will be degraded by
0.001%. Therefore, an object from a calling context with
a larger number of allocations will be made less likely to
be watched each time.

• Degradation after each watch: CSOD reduces the proba-
bility of a calling context by half each time, if a calling
context has been watched. Thus, objects from a calling
context with fewer allocations have a higher chance of
being observed.

• Installation due to availability: If a watchpoint is
available, CSOD will watch an object, regardless of its
probability. Thus, we never waste precious hardware
watchpoints. This method also increases the detection
effectiveness for the first few objects, which are more
likely to be affected by input parameters.

Note that these percentages are pre-defined macros used at
compilation time, which could be further adjusted based on
the behavior of programs. However, based on our experiments,
these numbers generally work well. Due to these adaptive
methods, the probability of some calling contexts can be
quickly degraded, specifically when there are a large number
of allocations from this calling context, or objects from this
calling context have been watched multiple times before. CSOD
still maintains a lower bound on the probability in order to
guarantee that every calling context has some chance to be
watched in the future. Currently, the lower bound is set to
0.001%, and the probability will not be further reduced upon
reaching this value.

Handling the probability with a large number of allo-
cations: Some applications, such as Swaptions of PARSEC,
may contain calling contexts with an extremely large number
of allocations. Even with a probability of 0.001%, objects from
such calling contexts can be watched too frequently, incurring
substantial overhead associated with installing watchpoints.
Thus, CSOD further reduces the probability of the calling context
to 0.0001% when there are more than 5,000 allocations on
this calling context within a preset time period (currently set to
10 seconds). After this time period has elapsed, the probability
of objects from this calling context will again be increased to
the lower bound.

C. Watchpoint Management Unit

The Watchpoint Management Unit is in charge of the
installation, replacement, and removal of watchpoints.

1) Installing Watchpoints: The pseudo code for installing
a watchpoint is presented in Figure 3. A thread installs the
watchpoint for all threads, since there is no way to know
which thread will cause an overflow later. The first step of
the installation is to invoke perf_event_open to set up the
watchpoint, which returns a file descriptor that can be used
to enable or disable this watchpoint. Then, we configure

FOR_EACH_THREAD(ithread, aliveThreads) {
 struct perf_event_attr pe;
 pe.type = PERF_TYPE_BREAKPOINT;
 pe.bp_type = HW_BREAKPOINT_RW;
 pe.bp_addr = address;

 fd = perf_event_open(&pe, ithread->tid, -1, -1, 0);
 myflags = fcntl(fd, F_GETFL, 0);
 fcntl(fd, F_SETFL, myflags | O_ASYNC);
 // Send a SIGTRAP signal
 fcntl(fd, F_SETSIG, SIGTRAP);
 // Deliver it to the current thread
 fcntl(fd, F_SETOWN, ithread->tid);
 // Enable the watchpoint from now on
 ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
}

Fig. 3. Pseudo code for installing a watchpoint

notifications to be asynchronous, the signal to be SIGTRAP, and
specify the signal to be sent to the thread accessing the target
address. Finally, we can enable the watchpoint on that thread.
It is very important to allow the current thread to handle
the signal, otherwise there is no way to report the statement
causing the current buffer overflow in multithreaded programs.
Before installing watchpoints, the signal handler should be set
up correctly.

As shown in Figure 3, a watchpoint will be installed
on all threads, using their thread ID number. Therefore,
CSOD intercepts the pthread_create() invocation in order
to acquire the thread ID for each thread. All alive threads are
tracked in a global list, shown as aliveThreads in Figure 3.

2) Replacing Watchpoints: Upon every allocation, CSOD
determines whether this object should be watched. If available
watchpoints exist, they will be utilized first, without remov-
ing already-installed watchpoints. Otherwise, one installed
watchpoint should be preempted. In order to avoid frequent
replacements, CSOD only replaces a watchpoint when the
probability of the new object is larger than that of the existing
object. The probability of an existing object will be reduced
when it has been installed for a long period of time (e.g., 10
seconds). This method is reasonable, since an object without
overflows for an extended period will likely have a lower
chance of experiencing overflows in the future. We have
considered the following replacement policies, and evaluate
their effectivenesses in Section V-A1.

Naive policy: The naive policy is a no-preemption policy:
a watchpoint will be kept until its corresponding object is
deallocated. Upon an object’s deallocation, there is no need to
watch further accesses on the object. Then, the watchpoint on
this object will be removed in order to watch other addresses.

Random policy: When there are no available watchpoints,
one out of four existing watchpoints will be chosen randomly
to be removed. If the chosen one has a lower probability
(dynamically changed due to the time) than the new one, then
it is replaced by the new one. Otherwise, CSOD will proceed to

53

check the next watchpoint after this chosen one, until finding
one with a lower probability.

Near-FIFO policy: The FIFO policy indicates that the first-
installed watchpoint will also be the first to be replaced. To
support this, a circular buffer is utilized to track four watch-
points, and a pointer is utilized to point to the first-installed
watchpoint. However, as described before, a watchpoint will
be removed upon deallocation. Therefore, our policy is called
“near-FIFO” due to the balance between maintaining the FIFO
sequence and minimizing performance overhead. In order to
maintain the correct sequence after installation and deallocation,
we should sort the circular buffer every time. However, these
operations should be protected by a lock in a multi-thread
environment to avoid data races. Instead, CSOD only updates
the pointer to the next position, if the corresponding watchpoint
has been replaced. This update operation can be performed
correctly with an atomic instruction. Since deallocations may
change the FIFO order, the replacement process is no longer
in a strict FIFO order. Therefore, for this reason it is referred
to here as the “near-FIFO” order.

3) Removing Watchpoints: Removing a watchpoint can be
divided into two steps, as shown in Figure 4. The first step is to
obtain the file descriptor associated with a given address. Every
watched object maintains two addresses: one is the starting
address of this object, and the other is the actual canary address
that is being watched. At each object deallocation, the free
routine is only provided with the starting address of this object,
which will be utilized to determine whether it matches the
address of any existing watchpoint. From this, we can obtain
a watchpoint’s corresponding file descriptor.

The second step is to remove the current watchpoint for all
alive threads, which is the opposite operation of the installation.
To remove a watchpoint from one thread, two system calls are
invoked: one to disable the corresponding event, and the other
to close the file descriptor, as shown in Figure 4.

watchObject* object = getObjectByAddr(addr);
FOR_EACH_THREAD(ithread, aliveThreads) {
 int fd = object->watchpoint_fd[ithread->index];
 ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
 close(fd);
}

Fig. 4. Pseudo code for removing a watchpoint

D. Signal Handler

When a thread accesses one of the watched addresses, the
OS will send an asynchronous signal to the corresponding
thread immediately, as discussed in Section III-C1. Inside the
signal handler, CSOD should identify which watchpoint was
fired, then report the overflow.

1) Identifying Fired Watchpoints: CSOD registers the signal
handler via sigaction, and configures its signal handler to be
of type sa_sigaction. Thus, it is possible for CSOD to obtain
more information about the trap.

Within the signal handler, CSOD first obtains the file descriptor
from the siginfo_t structure, which can be utilized to deter-
mine which watchpoint was fired in the signal handler. Since
CSOD keeps all information associated with each watchpoint,
such as the file descriptor, the watched address, and its
allocation calling context, CSOD compares the current file
descriptor with each of these saved file descriptors one-by-
one, in order to identify which watchpoint has triggered the
signal.

2) Reporting Buffer Overflows: CSOD reports two types
of information to the user for each buffer overflow: the
corresponding allocation calling context, and the overflowing
site. The allocation calling contexts are kept in the hash table
as described above. The overflowing calling context can be
collected by analyzing the calling context of the signal handler.
As described in Section III-C1, we have configured the signal to
be delivered to the current thread that caused the buffer overflow.
Thus, the overflowing thread will be stopped immediately upon
accessing one of these watched addresses. CSOD simply employs
the backtrace function to obtain the calling context of the
overflowing site. It then invokes addr2line to print the detailed
line number for each level of the calling context, if the symbol
information was not stripped from the binary. Otherwise, CSOD
will report the binary address of the corresponding statements.

IV. OPTIMIZATIONS

CSOD introduces two optimizations to further improve its
effectiveness, described as follows.

A. Reviving Mechanism

It is possible that objects from one calling context do not
have overflows across multiple watches, then suddenly one
object from this context is overflowed due to a different input.
In order to handle such situations, CSOD further introduces
a reviving mechanism for those calling contexts with the
minimum probability (0.001%): the probability of a calling
context can be augmented randomly, by boosting it to 0.01%
after a period of time. Therefore, CSOD partially handles the
issues caused by different inputs.

B. Evidence-based Overflow Detection

Due to the limited number of watchpoints (four), CSOD
may miss some overflows on each execution. To improve
its effectiveness of detecting buffer over-writes, CSOD further
borrows the evidence-based detection from existing work, such
as DoubleTake [32] and HeapTherapy [63].

Upon each allocation, CSOD invokes the Canary Management
Unit (shown in Figure 2) to implant a canary immediately after
each heap object. The canary is a random value, as shown
in Figure 5. CSOD also saves a pointer to the calling context
so that it can be reported upon an overflow. The size of each
object is also prepended to the metadata in order to identify
the placement of the canary, and a pointer to the real object
returned by the memory allocator is also added in order to
support memalign operations. CSOD inserts an identifier to
indicate the header of each object.

54

Real	Object	Ptr	 Object	Size	 Calling	Context	Ptr	 Identifier	 Canary	Object	

Fig. 5. Object layout with evidence-based detection

Upon every object deallocation, CSOD invokes the Canary
Management Unit to check the integrity of canaries. Whenever
a canary is found to be corrupted, a heap overflow has already
occurred on the current object. CSOD immediately boosts the
probability of the corresponding calling context to 100%, such
that all following overflows sharing the same allocation calling
context can be detected from then on.
CSOD also checks all canaries at the end of execution, via the

registered exit function, which is controlled by its Termination
Handling Unit shown in Figure 2. Since a program may crash
due to overflows, or may never deallocate some objects in
the case of memory leaks, CSOD registers a common signal
handler to intercept erroneous exits caused by segmentation
faults or aborts. At the end of the execution, all allocation
calling contexts observed to have overflows are written to
persistent storage as a file in order to detect buffer overflow in
future executions.

V. EXPERIMENTAL EVALUATION

We performed the experiments on a two-socket qui-
escent machine, where each socket has 8 cores with
Intel R© Xeon R© CPU E5-2640 processors. It has 256GB
main memory in total. The experiments were performed on
Ubuntu 16.04, installed with Linux-4.4.25 kernel. We used
GCC-4.9.1 with -O2 and -g flags to compile all applications.

A. Effectiveness

The effectiveness evaluation was performed on 9 real
applications with known heap-related buffer over-reads or
over-writes, as shown in Table I. These buggy applications
(and their corresponding buggy inputs) were obtained from
Bugbench [34] or the CVE database. In addition, we specifically
looked for some large applications, such as MySQL and
Memcached. Among these bugs, three are buffer over-reads,
including the notorious Heartbleed problem [2], as well as
Libdwarf, and Zziplib. Other bugs are buffer over-writes.
Each application contains only one known buffer overflow bug.
For the Heartbleed vulnerability, we utilized Nginx-1.3.9
and OpenSSL-1.0.1f for the evaluation, as described in
HeapTherapy [63].

Bug Reports: Upon detection, CSOD reports two types of
information, including the calling context of the overflowing
site, and its corresponding allocation calling context. An
example bug report is shown as Figure 6, which shows
the report for the Heartbleed problem. With the reported
information, users can easily identify the problem, without
the need for further confirmation.

TABLE I
APPLICATIONS USED FOR EFFECTIVENESS EVALUATION

Application Vulnerability Reference
Gzip-1.2.4 Over-write BugBench [34]
Heartbleed Over-read CVE-2014-0160 [19]
Libdwarf-20161021 Over-read CVE-2016-9276 [50]
LibHX-3.4 Over-write CVE-2010-2947 [11]
Libtiff-4.01 Over-write CVE-2013-4243 [12]
Memcached-1.4.25 Over-write CVE-2016-8706 [57]
MySQL-5.5.19 Over-write CVE-2012-5612 [20]
Polymorph-0.4.0 Over-write BugBench [34]
Zziplib-0.13.62 Over-read CVE-2017-5974 [51]

 A buffer over-read problem is detected at:
GLIBC/memcpy-sse2-unaligned.S:81
OPENSSL/ssl/t1_lib.c:2588
OPENSSL/ssl/s3_pkt.c:1095
……
NGINX/os/unix/ngx_process_cycle.c:138
NGINX/core/nginx.c:415

This object is allocated at:
OPENSSL/crypto/mem.c:312
OPENSSL/crypto/bn/bn_ctx.c:217
……
NGINX/http/ngx_http_request.c:577
NGINX/http/ngx_http_request.c:527

Fig. 6. Bug report for Heartbleed

1) Evaluation Results: To evaluate the effectiveness of CSOD,
we ran each application 1,000 times, and Table II shows the
number of executions in which the corresponding overflow bugs
were detected. As described in Section III-C2, three watchpoint
replacement policies were evaluated here, including the naive,
random, and near-FIFO policies. The naive policy detected
overflows in five simple applications with very few allocations,
but could not detect bugs in complex programs with a large
number of allocations. The near-FIFO policy and random policy
had very similar results. Both detected bugs in a range between
10% and 100%, with an average of 58%.

Comparison with state-of-the-art: We also evaluated
these applications using the state-of-the-art, ASan [52]. ASan
cannot detect the overflows in Libtiff, LibHX, and Zziplib,
when the corresponding libraries are not instrumented. For
instance, the LibHX problem is actually caused inside the
libHX.so library, as described in Figure 6. We also verify the
false positives and false negatives of CSOD. False positives:
CSOD does not introduce any false positives, since only

55

TABLE II
EFFECTIVENESS RESULTS FOR 1,000 EXECUTIONS

Application Naive Random Near-FIFO
Gzip 1000 1000 1000
Heartbleed 0 364 396
Libdwarf 1000 480 459
LibHX 1000 929 885
Libtiff 1000 1000 1000
Memcached 0 163 183
Mysql 0 161 174
Polymorph 1000 1000 1000
Zziplib 0 110 102

accesses beyond object boundaries (actual overflows) will
trigger watchpoints. False negatives: CSOD did not miss any
overflows when considering the 1,000 executions together.
However, CSOD may miss non-continuous overflows that skip
boundaries.

TABLE III
DETAILED INFORMATION OF APPLICATIONS WITH BUGS

Application Total Number Number Before Overflow
Calling Context Allocations Calling Context Allocations

Gzip 1 1 1 1
Heartbleed 307 5,403 273 5,392
Libdwarf 26 152 24 147
LibHX 4 5 1 1
Libtiff 1 1 1 1
Memcached 74 442 74 442
Mysql 488 57,464 445 57,356
Polymorph 1 1 1 1
Zziplib 13 17 13 17

What can affect detection effectiveness: As described
above, the naive policy can always detect buffer overflows in
some applications, such as LibHX, and Libtiff. To understand
the reason, we further collected details of these applications,
shown as Table III. The second and third columns show the
total number of allocation calling contexts, and the number of
allocations in these applications, while the last two columns
show the number of occurrences of calling contexts and allo-
cations before the overflowing object. Applications, including
Gzip, Libdwarf, LibHX, Libtiff, and Polymorph, either have
no more than four calling contexts, or the overflowing object
appears within the first four allocations. Thus, the naive policy
can always capture these bugs, since watchpoints are installed
if available. However, it can never detect overflows for other
applications, without preempting existing watchpoints or use
of adaptive mechanisms. In contrast, CSOD can detect overflows
with a probability between 10% and 36% for other applications,
when using the random policy or near-FIFO policy. These
results indicate that the adaptive mechanisms of CSOD make it
effective at detecting overflows in large applications, with a
large number of calling contexts and allocations. For instance,
CSOD can detect the bug in MySQL about 174 times out of
1,000 executions, even if MySQL has 488 different calling
contexts and 57,464 allocations. We observed similar results
for Memcached and the Heartbleed problem as well.

2) Evidence-based Overflow Detection: We further evaluated
whether the evidence-based overflow detection (described in
Section IV-B) could enhance detection of buffer over-writes.
Based on our evaluation of six buggy applications containing
buffer overwrites (shown in Table I), CSOD can always detect
these over-write problems during their second execution, if
missed in the first execution.

B. Performance Overhead

We evaluated the performance of CSOD on the popular
PARSEC benchmark suite [7], and several widely-utilized
real applications, such as MySQL, Apache, Memcached, Aget,
Pbzip2, and Pfscan. There are 19 multithreaded applications
in total. We also evaluated the performance of ASan for
comparison. For a fair comparison, we only enabled the proper
flags for ASan to detect heap buffer overflows, using minimally-
sized redzones, although ASan can detect other issues as well.
Note that we did not instrument any external libraries. This
indicates that the actual performance overhead of ASan could
be much larger than the results shown here, if all libraries are
instrumented.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

Bla
cks
ch
ole
s	

Bo
dy
tra
ck	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim
	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm
ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
ter
	

Sw
ap
tio
ns
	
Vip
s	
X2
64
	

Ag
et	

Ap
ac
he
	

Me
mc
ac
he
d	

My
sq
l	

Pb
zip
2	

Pfs
ca
n	

Av
era
ge
	

N
or
m
al
ize

d	
O
ve
rh
ea
d	

CSOD	w/o	Evidence	 CSOD	 ASan	w/	Minimal	Size	of	Redzones	 ASan	

2.23	2.23	2.24	2.24	

Fig. 7. Performance overhead of CSOD vs. ASan

PARSEC benchmarks were evaluated using the native inputs
and 16 threads [7]. MySQL was tested via sysbench, with 16
clients and 100,000 maximum requests, where Figure 7 shows
the throughput (e.g., requests per second). Memcached was
evaluated using the python-memcached script [1], but with
the number of loops increased to 20 iterations. Apache was
tested by sending 100,000 requests via ab [3], and the number
of requests per second is shown in Figure 7. Aget downloads a
600MB file from a quiescent server on the local network. Lastly,
Pfscan performs a keyword search on 4GB data, while Pbzip2
compresses a 7GB file. The inputs are different from those used
to evaluate effectiveness, as these inputs are appropriate for
performance evaluation, similar to existing work. By contrast,
for the effectiveness evaluation, those inputs were only used
to trigger the bugs.

The results of CSOD and ASan are normalized to the
performance of the default Linux system, as shown in Figure
7. Freqmine is omitted for ASan due to a program crash

56

in our evaluation environment. Overall, CSOD imposes 6.7%
performance overhead on average, while ASan’s overhead is
around 39% [52]. Without evidence-based detection, CSOD
only imposes 4.3% performance overhead (see “CSOD w/o
Evidence”). Note that ASan’s overhead can be higher when
all libraries are instrumented, and ASan reports around 73%
performance overhead in their paper [52].

The major overhead of CSOD comes from memory allocations:
(1) it must obtain the corresponding calling context and its
probability for each allocation. (2) It must determine whether
it is necessary to watch this object, with the randomization
support. (3) If the object is to be watched, CSOD needs to
install a watchpoint for it, possibly by disabling another
existing one. Also, CSOD introduces checking overhead at object
deallocations, and at the end of execution, if evidence-based
detection is enabled. Thus, CSOD’s overhead is proportional
to the number of allocations and the number of installed
watchpoints. As described in Figure 3 and Figure 4, eight
system calls are used to install and remove a watchpoint for
each thread. We could further reduce the performance overhead
by combining these system calls into one custom system call,
but this requires modification of the underlying OS.

TABLE IV
CHARACTERISTICS OF APPLICATIONS

Application LOC CC Allocations WT
Blackscholes 479 4 4 4
Bodytrack 11,938 81 431,022 325
Canneal 4,530 10 30,728,172 79
Dedup 37,307 93 4,074,135 182
Facesim 45,748 109 4,746,070 369
Ferret 40,997 118 139,246 346
Fluidanimate 880 2 229,910 5
Freqmine 2,709 125 4255 218
Raytrace 36,871 63 45,037,327 561
Streamcluster 2043 21 8,861 30
Swaptions 1631 10 48,001,795 370
Vips 206,059 400 1,425,257 259
X264 33,817 60 35,753 37
Aget 1,205 14 46 16
Apache 269,126 56 357 27
Memcached 14,748 85 468 79
MySQL 1,290,401 1186 1,565,311 1,362
Pbzip2 12,108 13 57,746 58
Pfscan 1,091 6 6 5

To explain the performance overhead, we further collected
different characteristics of these applications (as shown in
Table IV), including lines of code, number of calling contexts of
allocations (“CC” column), number of allocations (“Allocations”
column), and number of watched times (“WT” column). Note
that the input used for performance evaluation is different from
that used for effectiveness evaluation. Because of this, the
characteristics for the same applications are different.

As shown in Figure 7, “CSOD w/o Evidence” introduces more
than 10% performance overhead for only three applications:
Canneal, Ferret, and Raytrace. Canneal and Raytrace
have large numbers of allocations – 30 million and 45
million allocations, respectively – where checking their contexts
accounts for the majority of the overhead. Ferret runs for less

than five seconds, which exaggerates the proportion of CSOD’s
initialization overhead. However, if the number of allocations
is low, such as for Blackscholes or Aget, CSOD imposes
negligible overhead.

In contrast, the major component of ASan’s overhead comes
from its checking of every memory access. ASan imposes little
overhead for IO-bound applications, such as Aget or Pfscan.
Also, ASan may impose less overhead if a large portion of
time is spent in libraries without instrumentation, such as in
Pbzip2. In general, ASan is more suitable for the development
phase due to its large overhead, but not for the deployment
phase.

C. Memory Overhead

We also evaluated the maximum memory overhead of CSOD
using the same applications as those used in the performance
evaluation. For server applications, including Apache, MySQL,
and Memcached, we collected the physical memory consump-
tion from the VmHWM field in the /proc/PID/status file.
Memory consumption of other applications is collected from the
output of the time utility. The maxresident field of this utility
reports the maximum amount of physical memory consumed
by an application [30].

TABLE V
MEMORY USAGE

Application Original CSOD ASan
Kb % Kb %

Blackscholes 613 630 103 673 110
Bodytrack 34 51 151 362 1079
Canneal 940 1,353 144 1,586 169
Dedup 1,599 1,781 111 1,530 96
Facesim 2,422 2,462 102 3,228 133
Ferret 68 90 133 413 610
Fluidanimate 408 434 106 489 120
Freqmine 1,241 1,262 102 - -
Raytrace 1,135 1,306 115 2,523 222
Streamcluster 111 128 115 151 136
Swaptions 9 27 289 390 4178
Vips 59 78 133 333 570
X264 486 507 104 693 142
Aget 7 23 359 21 320
Apache 5 28 523 25 477
Memcached 7 26 391 24 359
Mysql 124 145 117 395 317
Pbzip2 128 148 116 411 322
Pfscan 4,044 3,688 91 4,142 102
Total 13,439 14,167 105 17,386 143

Table V shows the memory usage of the default library
(“Original”), CSOD, and ASan. CSOD enabled its evidence-based
overflow detection while collecting the memory data. ASan ran
with the minimal size of redzones (16 bytes). Overall, CSOD
introduces around 5% memory overhead in total, as compared
to the default library. In contrast, ASan’s memory overhead is
around 43% in total, which is significantly higher than that of
CSOD.

As shown in Table V, CSOD imposes a high memory overhead
for small-footprint applications, such as Aget and Apache.
Most overhead is caused by the addition of the 32-byte header
prior to each object, as well as the 8-byte canary at the end of

57

each object, in order to support the evidence-based mechanism.
However, CSOD only adds a single-digit percentage of memory
overhead for large-footprint applications, such as Facesim and
Pfscan. Overall, CSOD’s memory overhead is acceptable for
the production environment.

VI. LIMITATIONS

Due to its sampling mechanism, CSOD cannot detect all bugs
using a single execution. However, as discussed in Section I,
only a few executions are required to detect such bugs, and
the probability of detection ranges from 10% to 100% for each
execution. Additionally, CSOD reports root causes of overflows
automatically and correctly, which will eliminate manual effort
spent confirming software failures [26], [16]. CSOD is suitable
for software with a large number of users, where multiple
executions by multiple users help detect overflows.
CSOD also has the following limitations: (1) some objects

are overflowed after a long period of time following their
allocation. Due to the algorithms employed, the watchpoint
may be preempted prior to the overflow occurring. However,
the evidence-based detection will assuredly detect buffer over-
writes, after evidence of these bugs is observed. (2) CSOD may
not be able to detect non-continuous overflows that skip the
addresses of installed watchpoints, since the watchpoints are
only installed at the boundary of heap objects. (3) CSOD may
have a low detection rate for overflows that are affected by
different inputs during the execution. If objects from a calling
context have been checked multiple times without encountering
an overflow, the chance of observing future objects from the
same calling context will be lowered.
CSOD cannot detect buffer overflows in global variables and

stack variables. CSOD can only detect continuous overflows,
which will always read or write the next word beyond the
object’s boundary, similar to DoubleTake [32]. ASan can detect
overflows within redzones, regardless of stride or continuity,
which is superior to CSOD. ASan cannot detect non-continuous
overflows beyond the redzones.

VII. RELATED WORK

This section discusses dynamic tools for detecting buffer
overflows. Existing works can be classified by their instrumen-
tation methods.

Dynamic instrumentation-based detectors: Numerous
tools use dynamic instrumentation, including Valgrind’s Mem-
check tool [42], Dr. Memory [10], Purify [23], Intel Inspec-
tor [25], and Sun Discover [46], by using different dynamic
instrumentation engines, such as Pin [35], Valgrind [42], and
DynamiRIO [9]. These tools have an obvious advantage in that
they are easy to use, since they do not require the recompilation
or modification of programs. However, one major disadvantage
of these tools is that they typically come with high performance
overhead. For instance, programs running with Valgrind take
20× longer than the original execution [42]. Also, they are
still unsuitable for normal users without expertise.

Static instrumentation-based detectors: Many tools per-
form static analysis to eliminate unnecessary instrumentation,

which reduces performance overhead [49], [5], [21], [22], [39],
[41], [47], [52], [54]. The state-of-the-art in this approach,
ASan [52], imposes around 39% performance overhead in
detecting buffer overflows, without instrumenting all libraries.
This overhead is still too high to be employed in the production
environment. Also, ASan can miss memory vulnerabilities
contained in libraries [55], [61].

Hardware-assisted tools: Intel MPX [45] and CHERI [58]
design new hardware to enforce memory safety. Intel MPX
checks memory reads and writes by hardware instructions. It
maintains pointer metadata in bounds tables, which is similar
to SoftBound [39]. However, the high overhead is an obstacle
to its adoption in practice. The CHERI architecture, compiler,
and operating system support fine-grained, capability-based
memory protection. However, programmers should modify the
source code to leverage CHERI. Some existing tools utilize
hardware watchpoints, but for different purposes. DataCollider
uses hardware watchpoints to detect race conditions [18]. Kivati
utilizes hardware watchpoints to detect atomicity violations
with the assistance of static analysis [14]. Libson adopts
hardware debug registers to detect whether a variadic function
accesses memory outside the input argument list [29], which
has a different target than that of CSOD. Boud employs hardware
watchpoints to detect array bounds violations [15], which
requires compiler-based instrumentation to insert canaries. One
work concurrent with ours, Sampler [53], utilizes PMU-based
memory access sampling to detect buffer overflows and use-
after-frees, with similar overhead to that of CSOD. However,
Sampler requires a custom memory allocator, and change of
the underlying OS. In contrast, CSOD requires no availability
of source code, no change of the underlying OS, and detects
a larger range of buffer overflows in the range of all heap
objects, with a similar performance overhead. These benefits
come from CSOD’s “Context-Sensitive” method that separates
it with these existing works.

Interposition-based detectors: Many approaches use a mix
of library interposition and virtual memory techniques to
detect memory errors [6], [8], [13], [28], [36], [43], [44],
[48], [62], [38], [63], [32], [31]. BoundsChecker interposes on
Windows’ heap library calls to detect memory leaks, use-after-
free errors, and buffer overflows [38]. DoubleTake [32] and
iReplyer [31] only introduce 4% performance overhead, but
cannot detect read-based buffer overflows. Similar to Double-
Take, HeapTherapy implants canaries around each heap object
and checks buffer over-writes upon memory deallocations [63].
HeapTherapy places non-readable/non-writable pages around
every object in order to detect buffer over-reads, which has
much higher overhead than CSOD.

VIII. CONCLUSION

This paper presents a context-sensitive approach to detect
buffer overflows. A tool, called CSOD, utilizes this approach
and four hardware watchpoints to detect buffer overflows in
applications with up to millions of lines of code and millions
of objects. CSOD can automatically report root causes of latent
buffer overflows in both single-threaded and multi-threaded

58

applications. Overall, CSOD detects buffer overflows with a
probability range of between 10% and 100%, while only
imposing around 6.7% performance overhead. CSOD is suitable
for production environments due to its low overhead, precise
reporting, and no manual intervention.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Jingling Xue, and
anonymous reviewers for their valuable suggestions and
feedback. This material is based upon work supported by
the National Science Foundation under Award CCF-1566154,
CCF-1566158, CNS-1748109 and CCF-1823004. The work is
also supported by Google Faculty Award, Mozilla Research
Grant and the GREAT seed grant from UTSA Office of Vice
President for Research, Economic Development and Knowledge
Enterprise.

REFERENCES

[1] Pure python memcached client. https://pypi.python.org/pypi/
python-memcached.

[2] Heartbleed, 2014.
[3] ab Developers. ab - apache http server benchmarking tool. https:

//httpd.apache.org/docs/2.4/programs/ab.html.
[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-

flow integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, pages 340–353, 2005.

[5] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy
bounds checking: an efficient and backwards-compatible defense against
out-of-bounds errors. In Proceedings of the 18th conference on USENIX
security symposium, SSYM’09, pages 51–66, Berkeley, CA, USA, 2009.
USENIX Association.

[6] Hayati Ayguen and Michael Eddington. DUMA - Detect Unintended
Memory Access. http://duma.sourceforge.net/.

[7] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for
chip-multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[8] Michael D. Bond and Kathryn S. McKinley. Bell: Bit-encoding online
memory leak detection. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pages 61–72, New York, NY, USA,
2006. ACM.

[9] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Proceedings of the
international symposium on Code generation and optimization: feedback-
directed and runtime optimization, CGO ’03, pages 265–275, Washington,
DC, USA, 2003. IEEE Computer Society.

[10] Derek Bruening and Qin Zhao. Practical memory checking with dr.
memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages
213–223, Washington, DC, USA, 2011. IEEE Computer Society.

[11] Bugzilla. "libhx: buffer overrun in hx_split()". https://bugzilla.redhat.
com/show_bug.cgi?id=625866, 2010.

[12] Bugzilla. "libtiff (gif2tiff): possible heapbased buffer overflow in
readgifimage()". http://bugzilla.maptools.org/show_bug.cgi?id=2451,
2013.

[13] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: early detection of dangling pointers in use-after-free and
double-free vulnerabilities. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, pages 133–
143, New York, NY, USA, 2012. ACM.

[14] Lee Chew and David Lie. Kivati: Fast detection and prevention of
atomicity violations. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 307–320, New York, NY, USA,
2010. ACM.

[15] Tzi-cker Chiueh. Fast bounds checking using debug register. In
International Conference on High-Performance Embedded Architectures
and Compilers, pages 99–113. Springer, 2008.

[16] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and
Vasileios P. Kemerlis. Retracer: Triaging crashes by reverse execution
from partial memory dumps. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 820–831, New
York, NY, USA, 2016. ACM.

[17] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,
Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, and Vern Paxson. The matter of heartbleed. In
Proceedings of the 2014 Conference on Internet Measurement Conference,
IMC ’14, pages 475–488, New York, NY, USA, 2014. ACM.

[18] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 151–162, Berkeley, CA, USA, 2010.
USENIX Association.

[19] Exploit. "openssl heartbeat poc with starttls support". https://gist.github.
com/takeshixx/10107280, 2014.

[20] Exploit. "mysql (linux) heap based overrun poc zeroday". http://www.
exploit-db.com/exploits/23076/, 2017.

[21] Frank Ch. Eigler. Mudflap: pointer use checking for C/C++. Red Hat
Inc., 2003.

[22] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, pages 135–144, New York, NY,
USA, 2012. ACM.

[23] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In In Proc. of the Winter 1992 USENIX Conference,
pages 125–138, 1991.

[24] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In Proceedings of the
11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, pages 156–164, New
York, NY, USA, 2004. ACM.

[25] Intel Corporation. Intel inspector xe 2013. http://software.intel.com/
en-us/intel-inspector-xe, 2012.

[26] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and
George Candea. Failure sketching: A technique for automated root
cause diagnosis of in-production failures. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, pages 344–360,
New York, NY, USA, 2015. ACM.

[27] Prasad Krishnan. Hardware breakpoint (or watchpoint) usage in linux
kernel. IBM Linux Technology Center, Canada, pages 1–10, 2009.

[28] Doug Lea. The GNU C library. http://www.gnu.org/software/libc/libc.
html.

[29] Wei Li and Tzi-cker Chiueh. Automated format string attack prevention
for win32/x86 binaries. In Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, pages 398–409. IEEE, 2007.

[30] Linux Comunity. time - time a simple command or give resource usage,
2015.

[31] Hongyu Liu, Sam Silvestro, and Tongping Liu. Idealreplay: Identical
and efficient record-and-replay. Technical report.

[32] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Doubletake:
Fast and precise error detection via evidence-based dynamic analysis.
In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 911–922, New York, NY, USA, 2016.
ACM.

[33] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A study of interleaving
coverage criteria. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ESEC-FSE
’07, pages 533–536, New York, NY, USA, 2007. ACM.

[34] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan
Zhou. Bugbench: Benchmarks for evaluating bug detection tools. In In
Workshop on the Evaluation of Software Defect Detection Tools, 2005.

[35] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pages
190–200, New York, NY, USA, 2005. ACM.

[36] Mac OS X Develper Library. Enabling the malloc debugging features.
https://tinyurl.com/y6wszxad.

[37] David Mazieres. "arc4random(3)". https://www.openbsd.org, 1996.

59

https://pypi.python.org/pypi/python-memcached
https://pypi.python.org/pypi/python-memcached
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
http://duma.sourceforge.net/
https://bugzilla.redhat.com/show_bug.cgi?id=625866
https://bugzilla.redhat.com/show_bug.cgi?id=625866
http://bugzilla.maptools.org/show_bug.cgi?id=2451
https://gist.github.com/takeshixx/10107280
https://gist.github.com/takeshixx/10107280
http://www.exploit-db.com/exploits/23076/
http://www.exploit-db.com/exploits/23076/
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-xe
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
https://tinyurl.com/y6wszxad
https://www.openbsd.org

[38] Microfocus. Micro focus devpartner boundschecker. http://www.
microfocus.com/store/devpartner/boundschecker.aspx, 2011.

[39] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Softbound: Highly compatible and complete spatial memory
safety for c. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages
245–258, New York, NY, USA, 2009. ACM.

[40] National Institute of Standards and Technology. National vulnerability
database. https://nvd.nist.gov/vuln/search/results?adv_search=true&form_
type=advanced&results_type=overview&query=buffer+overflow.

[41] George C. Necula Necula, McPeak Scott, and Weimer Westley. Ccured:
Type-safe retrofitting of legacy code. In Proceedings of the Principles
of Programming Languages, pages 128–139, 2002.

[42] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’07, pages 89–100, New York, NY, USA, 2007.
ACM.

[43] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator:
automatically correcting memory errors with high probability. In
Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2007), pages 1–11, New
York, NY, USA, 2007. ACM Press.

[44] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently
and precisely locating memory leaks and bloat. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’09, pages 397–407, New York, NY, USA,
2009. ACM.

[45] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel mpx explained: A cross-layer analysis of
the intel mpx system stack. Proc. ACM Meas. Anal. Comput. Syst.,
2(2):28:1–28:30, June 2018.

[46] Oracle Corporation. Sun memory error discovery tool (discover). http:
//docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html.

[47] parasoft Company. Runtime Analysis and Memory Error Detection for
C and C++, 2013.

[48] Bruce Perens. Electric Fence. http://perens.com/FreeSoftware/
ElectricFence/.

[49] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow
detector. In In Proceedings of the 11th Annual Network and Distributed
System Security Symposium, pages 159–169, 2004.

[50] Agostino Sarubbo. "libdwarf: heap-based buffer overflow in
dwarf_get_aranges_list". https://goo.gl/mz9reR, 2016.

[51] Agostino Sarubbo. "zziplib: heap-based buffer overflow in __zzip_get32
(fetch.c)". https://goo.gl/yqtyrB, 2017.

[52] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: a fast address sanity checker. In

Proceedings of the 2012 USENIX conference on Annual Technical
Conference, USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012.
USENIX Association.

[53] Sam Silvestro, Hongyu Liu, Tong Zhang, Changhee Jung, Dongyoon
Lee, and Tongping Liu. Sampler: Pmu-based sampling to detect memory
errors latent in production software. In Proceedings of the 51th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-51
’18, 2018.

[54] Y. Sui, D. Ye, Y. Su, and J. Xue. Eliminating redundant bounds checks
in dynamic buffer overflow detection using weakest preconditions. IEEE
Transactions on Reliability, 65(4):1682–1699, Dec 2016.

[55] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE
Computer Society.

[56] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE
Computer Society.

[57] Talos. "memcached server sasl autentication remote code ex-
ecution vulnerability". https://www.talosintelligence.com/reports/
TALOS-2016-0221/, 2016.

[58] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera. Cheri: A hybrid capability-
system architecture for scalable software compartmentalization. In 2015
IEEE Symposium on Security and Privacy, pages 20–37, May 2015.

[59] Vincent M Weaver. Linux perf_event features and overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized
Systems, FastPath, volume 13, 2013.

[60] Wikipedia. x86 debug register. https://en.wikipedia.org/wiki/X86_debug_
register.

[61] T. Ye, L. Zhang, L. Wang, and X. Li. An empirical study on detecting
and fixing buffer overflow bugs. In 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pages 91–101,
April 2016.

[62] Qiang Zeng, Dinghao Wu, and Peng Liu. Cruiser: concurrent heap buffer
overflow monitoring using lock-free data structures. In Proceedings of
the 32nd ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’11, pages 367–377, New York, NY, USA,
2011. ACM.

[63] Qiang Zeng, Mingyi Zhao, and Peng Liu. Heaptherapy: An efficient
end-to-end solution against heap buffer overflows. In Proceedings of the
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’15, pages 485–496, Washington, DC, USA,
2015. IEEE Computer Society.

60

http://www.microfocus.com/store/devpartner/boundschecker.aspx
http://www.microfocus.com/store/devpartner/boundschecker.aspx
https://nvd.nist.gov/vuln/search/results?adv_search=true&form_type=advanced&results_type=overview&query=buffer+overflow
https://nvd.nist.gov/vuln/search/results?adv_search=true&form_type=advanced&results_type=overview&query=buffer+overflow
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
http://perens.com/FreeSoftware/ElectricFence/
http://perens.com/FreeSoftware/ElectricFence/
https://goo.gl/mz9reR
https://goo.gl/yqtyrB
https://www.talosintelligence.com/reports/TALOS-2016-0221/
https://www.talosintelligence.com/reports/TALOS-2016-0221/
https://en.wikipedia.org/wiki/X86_debug_register
https://en.wikipedia.org/wiki/X86_debug_register

	Introduction
	Overview
	Background of Watchpoints
	Basic Idea of CSOD

	Implementation Details
	Alloc/Dealloc Monitoring Unit
	Allocation
	Deallocation

	Sampling Management Unit
	Maintaining Probabilities for Calling Contexts
	Adaptively Adjusting Probability

	Watchpoint Management Unit
	Installing Watchpoints
	Replacing Watchpoints
	Removing Watchpoints

	Signal Handler
	Identifying Fired Watchpoints
	Reporting Buffer Overflows

	Optimizations
	Reviving Mechanism
	Evidence-based Overflow Detection

	Experimental Evaluation
	Effectiveness
	Evaluation Results
	Evidence-based Overflow Detection

	Performance Overhead
	Memory Overhead

	Limitations
	Related Work
	Conclusion
	References

