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Abstract—Deployed software is still faced with numerous in-
production memory errors. They can significantly affect the sys-
tem reliability and security, causing application crashes, erratic
execution behavior, or security attacks. Unfortunately, existing
tools cannot be deployed in production software, since they either
impose significant performance/memory overhead, or can only
detect partial errors. This paper presents Sampler, a library
that employs the combination of hardware-based SAMPLing
and novel heap allocator design to efficiently identify a range
of memory ERrors, including buffer overflows, use-after-frees,
invalid frees, and double-frees. Due to the stringent Quality
of Service (QoS) requirement of production services, Sampler
proposes to trade detection effectiveness for performance on
each execution. Rather than inspecting every memory access,
Sampler proposes the use of the Performance Monitoring Unit
(PMU) hardware to sample memory accesses, and only checks
the validity of sampled accesses. At the same time, Sampler
proposes a novel dynamic allocator supporting fast metadata
lookup, and a solution to prevent false alarms potentially caused
by sampling. The sampling-based approach, although it may lead
to reduced effectiveness on each execution, is suitable for in-
production software, since software is generally employed by a
large number of individuals, and may be executed many times
or over a long period of time. By randomizing the start of the
sampling, different executions may sample different sequences of
memory accesses, working together to enable effective detection.
Experimental results demonstrate that Sampler detects all
known memory bugs inside real applications, without any false
positive. Sampler only imposes negligible performance overhead
(2.4% on average). Sampler is the first work that simultaneously
satisfies efficiency, preciseness, completeness, accuracy, and trans-
parency, making it a practical tool for in-production deployment.

Index Terms—Sampling Technique, PMU, Vulnerability Detec-
tion

I. INTRODUCTION

Memory errors, such as buffer overflows and use-after-
frees, have plagued deployed C/C++ software for decades [1],
[2], causing programs to crash or produce incorrect results.
Even worse, they can be exploited to launch security attacks,
resulting in the leakage of private data, and even the hijacking
of the whole machine [1].

It is impossible to expunge all memory errors during devel-
opment phases via static analysis and dynamic testing. Static
analysis approaches have numerous false positives and/or scal-
ability issues [1]. Although dynamic testing overcomes these
two issues, it requires specific inputs, timing, or susceptible
schedules (especially for multithreaded programs) to expose
the bugs [3], which can never be achieved given insufficient

testing time and imperfect testing environments [4]. Therefore,
numerous memory errors are inevitably leaked to the deployed
environment. As shown in TABLE I, a significant number of
memory errors hidden in deployed software were reported in
a single year by the NVD database [5].

Memory Errors Heap Overflow Heap Over-read Invalid-free Double-free Use-after-free
Occurrences (#) 673 125 35 33 264

TABLE I
REPORTED HEAP ERRORS IN THE PAST YEAR.

Unfortunately, none of the existing dynamic tools have been
employed in the production environment due to their seri-
ous shortcomings. Many tools incur significant performance
overhead [2], [6]–[15]. For instance, Valgrind introduces more
than 20× overhead [9], [16], caused by its expensive dynamic
instrumentation and checking prior to every memory access.
AddressSanitizer, a popular work from Google Inc., employs
static analysis to reduce the checking of memory accesses, but
still imposes over 70% performance overhead, and more than
3× memory overhead [2]. More importantly, AddressSanitizer
can only detect errors of instrumented components, thereby
missing errors caused by any third-party or non-instrumented
libraries [17].

Although lightweight techniques exist [16], [18]–[20], they
also have their own serious limitations. SafeMem functions
only on machines equipped with Error-Correcting Code (ECC)
memory (typically only available on high-end servers), and
requires changes to the underlying operating system [18].
Due to the re-purposing of ECC, SafeMem unavoidably
compromises the original goal of ECC, i.e., preventing data
corruption. Cruiser only reports the possibilities of buffer
overflows, but cannot inform the specific locations of these
errors [19]. DoubleTake [16] and iReplayer [20], two recent
detection tools, can only detect write-based memory errors,
while overlooking a larger portion of read-based errors.

This paper proposes Sampler, a tool that simultaneously
satisfies all of the key properties necessary to be employed in
the production environment.

• Efficiency: The detection overhead should be extremely
low, due to the stringent Quality of Service (QoS) demand
of in-production software, e.g., < 5% [21], [22].

• Preciseness: The report should include sufficient infor-
mation to assist programmers with fixing the bugs.

• Completeness: The tool should be able to detect both
read and write errors caused by all components.



• Accuracy: Every reported error should be a real problem.
In fact, it is extremely difficult for programmers to con-
firm in-production errors due to the lack of runtime en-
vironment, such as sensitive inputs, third-party libraries,
or execution records [23], [24].

• Transparency: The detection procedure should be trans-
parent to normal users, requiring zero effort from them,
since they may not have the expertise or willingness to
perform any additional tasks.

We observe that the deployed software is generally utilized
by a large number of individuals, e.g. over 1 billion Microsoft
Office users [25], or is executed many times or over a long
period of time. This fact makes it possible to crowdsource the
error detection [26]: for each individual execution, Sampler
only incurs a minimum runtime overhead to detect partial
errors; however, we could employ myriad executions together
to detect memory errors.
Sampler proposes to utilize the sampling approach in

order to reduce its individual detection overhead. More specif-
ically, Sampler leverages the ubiquitous and off-the-shelf
Performance Monitoring Unit (PMU) hardware to trace/sample
memory accesses at a very low cost. PMU-based sampling is
non-intrusive, since it requires neither changes of applications
nor explicit instrumentation. Unlike existing work [2], [16], the
PMU hardware is able to sample memory reads and writes of
all components, thus detecting errors hidden in any compo-
nent. In addition, sampled events include precise instruction
pointers (IP) that can provide the line-of-code reference of the
errors. Therefore, PMU-based sampling has the potential to
satisfy the efficiency, completeness, and preciseness properties,
but in reality there are multiple technical challenges, listed as
follows.

First, many factors may still lead to significant performance
overhead, even with PMU-based sampling: (1) the overhead
can be prohibitively high if we must perform checking upon
every sample, due to the overhead caused by frequent in-
terrupts. Instead, Sampler configures the kernel to notice
the collection of samples when the buffer is full, and further
overcomes possible correctness issues by integrating with
its custom memory allocator. (2) The PMU hardware may
generate an excessive number of samples, e.g. thousands of
samples each second, even with a sampling period of 5000,
implying significant pressure for fast error checking. To tackle
this problem, Sampler designs a novel memory allocator that
provides an information-computable capability: given any
sampled address inside the heap, Sampler can compute the
starting address, the size class, and the metadata placement
of this object. We also further design the special layout of the
allocator to accelerate these computations upon every checking
operation.

Second, false positives or incorrect reports may be generated
when using the sampling mechanism. (1) Existing detectors
embed the metadata between actual heap objects [2], [16],
[20], which can be easily corrupted by memory errors, such
as buffer overflows or use-after-frees. Under these circum-
stances, false alarms can be generated. To avoid such cor-

ruptions, Sampler designs a BIBOP-style (meaning “big
bag of pages” [27]) allocator that separates the metadata
from actual objects. (2) It is challenging to determine the
temporal relationship between memory references and free
operations. To avoid false reports caused by an incorrect order,
Sampler employs the precise hardware timestamp of modern
machines to mark the events, and coordinates the actual free
operations of its custom allocator. Combining the detection
with its custom allocator provides other benefits as well, e.g.
avoiding the memory consumption caused by a bitmap, as
further described in Section III.

Third, the effectiveness can be greatly limited by the
sampling frequency. It is impractical to significantly increase
the sampling frequency due to potential high performance
overhead. Sampler instead proposes to randomly initiate
the sampling for different threads across different executions,
while keeping a stable overhead. This randomization mech-
anism is able to coordinate different executions altogether
(without using a centralized mechanism) to detect errors latent
in production software. This is because different executions
may experience different sequences of memory references,
thus detecting different errors.
Contributions

Overall, this paper makes the following contributions:

a) The first work utilizing PMU-based sampling for de-
tecting memory errors

Sampler is the first to propose the use of sampling to de-
tect memory errors, and is also the first work that leverages the
Performance Monitoring Unit (PMU) hardware for detecting
these errors. It further proposes to cooperate with its custom
allocator to avoid false alarms and reduce detection overhead.

b) A faster memory allocator with the “information-
computable” property

Sampler designs a novel BIBOP-style memory allocator
that provides the information-computable capability, by taking
advantage of the vast address space of 64-bit machines. The
allocator runs around 3% faster than the standard Linux
allocator, and enables the fast lookup of metadata. The al-
locator is also safer than the Linux allocator, by separating its
metadata from the actual heap. However, it imposes around
34% memory overhead.

c) A practical tool that can be transparently utilized in
the production environment

Sampler is a dynamic library that can simply be linked
to applications, which requires no change to the underlying
OS, no recompilation of legacy software, and no change
of applications. Sampler requires zero manual effort from
users. Experimental results show that Sampler detects known
bugs in widely-used applications, while imposing negligible
performance overhead (≈ 2.4% on average).
Paper Outline

The remainder of this paper is organized as follows. First,
Section II briefly discusses the background of the PMU, as
well as ideas for detecting different memory errors. Section III
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presents the design of Sampler’s memory allocator, and
Section IV presents the detailed implementation of Sampler.
Then, Section V discusses the effectiveness and limitations
of Sampler. Section VI further evaluates the effectiveness,
performance overhead, and memory overhead of Sampler.
In the end, Section VII discusses related works, while Sec-
tion VIII concludes the paper.

II. OVERVIEW

This section explains the background of PMU-based sam-
pling, technical challenges, and the basic ideas of detecting
different types of memory errors.
A. PMU-based Sampling
Sampler proposes to leverage the Performance Monitoring

Unit (PMU) hardware to sample memory accesses in order to
detect buffer overflows and use-after-frees.

The PMU hardware can sample memory accesses or other
hardware-related activities [4], [28]–[34]. Currently, the PMU
hardware is ubiquitous in modern architectures, including
Instruction-Based Sampling (IBS) [35] in AMD Opteron pro-
cessors, and Precise Event-Based Sampling (PEBS) [36] in
Intel-based processors. The PMU hardware will sample mem-
ory loads and stores, with their precise instruction pointers
(and call stack), timestamps, and memory addresses. The
memory address can be utilized to determine an invalid access,
while the precise instruction pointer (IP) can be used to infer
the line-of-code information of an application. The timestamp
information reports the temporality of each event, which could
be utilized to confirm whether an access is a use-after-free.

Operating the PMU hardware requires kernel support. Fortu-
nately, the Linux kernel has provided such support since 2009
(Linux-2.6.31) [37]. Users could program the corresponding
registers using the perf_event_open system call. After
obtaining a file descriptor returned from this system call, a
communication buffer can be established between the user
space and kernel space using the mmap system call. Based on
the preset sampling period, the kernel can write each sampled
event into this shared buffer, then interrupt the user program
to collect the sampled events when the buffer is full. For
instance, if the sampling period is set to 5000, the PMU
hardware will sample one out of 5000 memory accesses. The
overhead and effectiveness of PMU-based sampling highly
depends on the sampling period: more frequent sampling may
introduce a higher overhead and a better understanding of the
execution, while less frequent sampling reduces both overhead
and effectiveness.
B. Basic Ideas Of Detection
Sampler is designed to detect a range of memory errors,

including buffer overflows, use-after-frees, double and invalid
frees, where the basic ideas are described as follows.

1) Detecting Buffer Overflows

Buffer overflows occur when programs read/write outside
the boundaries of an object or variable. Buffer overflow is a
well-known source of security attacks [1] and many reliability
issues [2].

Redzone	 Heap	Object	 Redzone	 Heap	Object	 Redzone	

Fig. 1. Adding redzones along with objects.

To detect buffer overflows, existing work such as Address-
Sanitizer and DoubleTake allocate additional redzones (or
canaries) around each heap object [2], [16], as shown in Fig. 1.
If the redzone is touched, the buffer overflow is detected.
Sampler borrows the redzone idea: if a sampled access

is found to read or write within the redzone, an overflow is
detected and reported. Sampler organizes heap objects by
power-of-two sizes, and adjusts the size of each allocation
if necessary in order to make room for the redzone: if an
application requests a size less than the nearest power-of-two
ceiling, all remaining bytes of this object will be treated as
the redzone; otherwise, the allocation will be satisfied from
the next power-of-two size class, leaving the same space as
the requested size for the redzone. Additionally, Sampler
utilizes a different method to mark redzones, as described in
Section II-C, instead of using the bitmap mechanism.

2) Detecting Use-After-Frees

Use-after-frees (or dangling pointers) occur whenever an
application accesses a previously-deallocated object, while this
object is currently utilized for other purposes. Use-after-frees
may lead to unexpected program behavior or be exploited to
breach security.

In order to detect use-after-frees, Sampler borrows the
idea of AddressSanitizer: freed objects will be treated as
redzones, where touching them will be reported as a use-
after-free. To further increase the capability of detection, freed
objects are placed in a “quarantine list” so that they cannot be
reutilized in the near future. These objects are actually freed
(and thereafter available to be re-utilized) when the total size
of all quarantined objects rises above a predefined threshold,
or when there are no available slots in the given quarantine
list. However, Sampler utilizes per-thread quarantine lists in
order to reduce contention caused by placing objects into the
same list. As with the detection of buffer overflows, Sampler
also employs a different mechanism to mark redzones, de-
scribed in Section II-C.

3) Detecting Double and Invalid frees

A double-free problem indicates that an object is freed more
than once, while an invalid-free is caused by passing an invalid
pointer to the free function. Both errors have been exploited
to perform security attacks [38].
Sampler is guaranteed to detect all double and invalid

frees accurately, with no false positives. It employs its custom
allocator (described in Section III) for detection, without re-
quiring use of the sampling mechanism. Basically, Sampler
embeds the status information of each object into its metadata.
A double-free is detected if a pointer passed to the free
function is currently referring to a freed object, where the
mechanism of delaying re-allocations helps to catch such
bugs. To detect invalid frees, Sampler first checks whether
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the address belongs to the heap, then checks whether the
object is a valid heap object. Any violation will indicate
an invalid-free problem. Sampler’s allocator provides the
information-computable capability, which allows for the fast
lookup of metadata and confirmation as to whether an address
corresponds to a valid heap object.

In summary, Sampler applies the redzone idea to
sampling-based memory error detection. Sampler’s novel
custom allocator enables it to perform faster checking and
avoid false alarms.
C. Technical Challenges

As described in Section I, there are multiple technical
challenges, as listed below, along with the corresponding
sections in which they are addressed.
• How to avoid the corruption of heap metadata, and

therefore prevent false alarms caused by this? Sampler
designs a custom memory allocator that separates the
metadata from the actual heap, as described further in
Section III.

• How to reduce or prevent the overhead caused by the use
of bitmaps? For instance, AddressSanitizer adds at least
1/8 of its memory usage due to the bitmap. Sampler re-
lies on its information-computable capability, and places
the last valid address of each object into the metadata.
Sampler checks buffer overflows and use-after-frees
by comparing each memory reference with this address:
any references beyond the starting address and the last
valid address will be considered an invalid operation and
should be reported.

• The checking of bitmaps may incur significant perfor-
mance overhead. Again, this issue is addressed by the
information-computable capability. Sampler supports
fast metadata lookup, as described in Section III.

• How to crowdsource the detection of different execu-
tions? Sampler starts sampling randomly for different
threads and different executions, in order to cover as
many different sequences of memory accesses as pos-
sible, which helps to detect more memory errors. This is
further described in Section IV-B.

• How to reduce the overhead caused by frequent in-
terrupts? Sampler cumulatively collects and analyzes
samples as described in Section IV-C.

III. CUSTOM MEMORY ALLOCATOR

Sampler designs a novel memory allocator to overcome
the issues associated with employing the Linux allocator to
meet its unique needs for dynamic memory management.
Sampler takes separate approaches to manage small and
large objects, similar to existing allocators [39], [40]. An
allocation request larger than one megabyte will be satisfied
in the large heap (as described in Section III-B). Otherwise,
it will be treated as a small object, and managed using the
scheme described in Section III-A.
A. Management of Small Objects

For small objects, the memory layout of the allocator is
illustrated as Fig. 2. The allocator takes advantage of the vast

…… …… 

bagID 0 
objSize 16B 

… …… …… 

bagID 1 
objSize 32B 

bagID b 
objSize 2b+4 B 

…… …… 

bagID 16 
objSize 1MB 

Heap 

…… 

EndAddr | Status Call stack | Pointers Metadata 

redzone 

_bagSize  
(32G) 

_bagSize  
(32G) 

Fig. 2. Sampler’s custom allocator for small objects.

address space of 64-bit machines, and obtains a large block of
memory from the underlying operating system initially. This
large block is further partitioned into multiple chunks, where
each chunk is called a “bag” throughout the remainder of this
paper. Currently, the size of each bag is 32 gigabytes, but is
an adjustable option at compile time.
Sampler also employs the idea of BIg-Bag-Of-Pages

(known as “BIBOP” style) to manage these bags [38], [41].
Basically, all pages within the same bag hold objects of the
same size. The size of these heap objects are always a power-
of-two, ranging from 16 bytes up to one megabyte. Note,
that the object size of these bags is monotonically increasing
from 16 bytes to one megabyte. That is, the first bag will
be dedicated for objects of 16 bytes, the second bag will
hold objects of 32 bytes, and so forth. This design will not
allow for two bags holding objects of the same size. Also,
these objects are never further divided or coalesced, which is
different from the Linux allocator. If an allocation request for
a specific size cannot be satisfied, Sampler should report
this to the user. Then, the size of each bag should be changed
to a larger value upon restarting this application. However, 32
gigabytes for each size class should be sufficiently large for
most applications, as we have never encountered a situation
exceeding this.

Since each bag is always holding objects with the same
size, it is possible to separate the metadata of all objects from
the actual heap. This design will prevent metadata corruption
caused by memory errors, such as buffer overflows. Also,
this layout actually provides the information-computable
capability: given an address within the heap, we can easily
compute the starting address, size class, and the metadata
placement of the corresponding object, if we know the starting
addresses of the heap and the metadata.

The allocator employs a per-thread sub-heap design, such
that memory allocations by each thread will be satisfied from
their own sub-heap [39]. This method reduces the false sharing
effect that may occur when multiple threads operate on the
same cache line simultaneously [42]. In Sampler’s design,
there is no need to acquire locks upon every allocation and
deallocation, except in cases of memory blowup as described
below: each allocation request will be satisfied from each
thread’s per-thread heap, either from its bump pointer or its
free list; conversely, each deallocation request will be inserted
into each thread’s free list that corresponds to the object’s size
class.
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a) Allocation

Each thread’s sub-heap has two mechanisms to satisfy an
allocation request: one is to use the bump pointer that always
points to the next never-allocated object on the heap, while the
other is to use the free list that tracks free objects from the
current thread [43]. Upon each allocation, the free list will be
checked first. Typically, objects in the free list are managed
in Last-In-First-Out (LIFO) order, where the most recently
deallocated object will be re-utilized first. This method will
benefit temporal locality, since the recently-deallocated object
is typically still in the cache. If there are no objects available in
the corresponding free list, we will allocate the object pointed
to by the bump pointer, then increment the bump pointer to
refer to the next object. If the sub-heap is exhausted, i.e. there
are no available objects in the free list and the bump pointer
is invalid, another block (e.g. 8MB) will be obtained from the
corresponding bag, under the protection of a bag-wise lock.

b) Deallocation

Each deallocation will be returned to the current thread’s
free list related to a particular size class. This method avoids
unnecessary lock acquisitions and possible lock contention.
However, it will not generate unnecessary cache contention:
when an object is freed by another thread, this freeing thread
has typically loaded the cache line already, which will not
cause unnecessary cache contention even if the object is re-
used by the thread. Furthermore, it will not exacerbate the
false sharing problem, in comparison to the approach of
returning a freed object to its owner thread: two different
threads may work on the same cache line for both cases.
We have experimentally confirmed that this method improves
performance.

c) Information-Computable Capability for Fast Error
Checking

Sampler’s allocator accelerates the metadata lookup by
computing related information (such as bag ID, object size,
and object ID) directly from the sampled memory address.

Fig. 3 (heap layout) and Fig. 4 (pseudo-code) show
how Sampler computes them. For each sampled address
(sampleAddr), the bag index (bagID) to which the sampled
access belongs can be computed by dividing the offset within
the heap (sampleOffset) with the fixed-length bag size
( bagsSize, 32GB). Because bags are allotted together with
a monotonically increase, we can compute the object size
(objSize) using the bag index (bagID). Since all objects
in a bag have the same size, by using the offset within the
bag (sampleOffset - bagOffset), we can determine the
object index (objID) in turn. It is also possible to compute
the object starting address (objStart) using the precomputed
values (bagOffset, objID, and objSize). Most importantly,
this fast-calculated unique objID allows Sampler to directly
look up the metadata with no searching, enabling fast memory
error checking.

Although Sampler’s allocator shares the same
“information-computable capability” as FreeGuard [44],

sampleAddr 

…… 

bagID 0 

_heapStart 

objSize 16 

objStart 

… …… …… 

bagID 1 
objSize 32 

bagID b 
objSize 2b+4 

…… 

_bagSize  
(32G) 

sampleOffset 

0 1 … 0 2 1 … 3 0 … 

bagStart 
bagOffset 

objID  

_bagSize  
(32G) 

Fig. 3. Computation of related variables.

sampleOffset = sampleAddr - _heapStart;
bagID = sampleOffset / _bagSize;
bagOffset = bagID * _bagSize;
objSize = 1 << (bagID + 4);
objID = (sampleOffset - bagOffset) / objSize;
objStart = bagOffset + objID * objSize

+ _heapBegin;
objMetadata = _bagMetadata[objID];

Fig. 4. Computing information about sampleAddr.

it is distinct in three aspects: (1) FreeGuard will always return
the freed object back to its owner, which may introduce
unnecessary overhead caused by lock acquisitions and lock
contention; (2) Sampler can compute the information
faster: given an address within the heap, it requires only six
instructions to determine the size class and starting address
of each object, which is much faster than FreeGuard; (3) In
FreeGuard, it is possible to determine the owner thread’s
information for each object, while Sampler cannot do this,
since it does not have to. Overall, Sampler’s allocator is
simpler than FreeGuard, and also reduces the amount of
computation steps by almost half.

d) Reducing Memory Blowup

Memory blowup – where memory consumption is unnec-
essarily increased because freed memory cannot be reused
to satisfy future memory requests [39] – may occur, since
freed objects are always returned to the current thread’s sub-
heap, especially for applications using the producer-consumer
model. Therefore, a donation mechanism is further designed to
reduce the memory blowup. Each thread will monitor the total
size of freed objects for each size class, and start to donate
partial objects into the global free list, if the total size of freed
objects is larger than a predefined threshold, such as 64 KB.
Different from existing work [45], this threshold is adaptively
changed: if the amount of deallocations is less than twice of
allocations in this thread, we will double the threshold, making
it less likely to donate. Typically, a thread will not donate
freed objects, except for when the producer-consumer model is
used. We have confirmed that this mechanism will significantly
reduce unnecessary donations, avoiding unnecessary migration
of objects across multiple threads.
B. Management of Large Objects
Sampler manages large objects (those with sizes larger

than 1 MB) in another separate heap. The number of large
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objects is expected to be far fewer than that of small objects.
Therefore, we do not use the per-thread heap design to avoid
lock contention here. Instead, all threads will share the same
heap, avoiding the performance loss caused by unnecessary
cache loading and page faults. Large objects are aligned to
1MB, instead of using the power-of-two size classes as with
small objects.

In order to further reduce cache loadings, each thread will
still prefer to re-utilize objects freed by itself. Each thread
maintains one free list, which tracks the objects deallocated
by the current thread. Upon allocation, each thread will first
allocate from its free list, if possible. Whenever an available
object is found in its free list, it will check the status of its
neighbors in order to find a block with sufficient size. If this
is the case, then multiple contiguous blocks will be coalesced
together to satisfy the request. However, if the current free
list is empty, or if there are no available objects that satisfy
the request, even with coalescing, then Sampler proceeds
to search, beginning from the starting address of the big
heap. Only when these mechanisms fail, Sampler will use
the bump pointer to allocate from the never-allocated area.
Each 1MB block of memory will maintain its corresponding
metadata, which indicates the last valid address inside this
block, as well as status information, which will be utilized
during error checking. For large objects, the status information
of the object should be propagated to every coalesced 1MB
block upon allocations and deallocations.

IV. IMPLEMENTATION DETAILS

This section describes how Sampler works to detect
different types of memory errors, based on the combination
of PMU-based sampling and custom allocator design.
A. Intercepting Allocations and Deallocations
Sampler intercepts memory allocations and deallocations

using the preloading mechanism. Sampler places redzones
upon allocations for detecting buffer overflows and use-after-
frees, while it detects double and invalid frees upon dealloca-
tions (see Section II-B3).

As described in Section II-B, redzones are placed after each
contiguous object to detect both buffer underflows and over-
flows. Sampler uses flexible sizing of redzones by interacting
with its custom allocator. It always aligns the size of each
allocation to the next-highest power-of-two, and dedicates all
remainder bytes beyond the requested size of the object as
redzones. If an allocation is already aligned to a power-of-
two size, the object will be allocated from the next-largest
size class, which will install a memory region equal to the
requested size as redzones. On deallocation, every freed object
is moved into a quarantine list and marked as redzones (i.e.,
the entire object is rendered inaccessible) in order to detect
use-after-frees.

In particular, to track redzones, Sampler utilizes a differ-
ent mechanism from [2], [16] that use the bitmap mechanism.
When using a bitmap, the bits representing redzones must be
marked explicitly upon (de)allocations, imposing unnecessary
memory and performance overhead. However, existing work

ldFd=perf_event_open(&aLd,0,-1,-1,0);
stFd=perf_event_open(&aSt,0,-1,ldFd,0);

ringBuf=mmap(NULL,MAPSIZE,PROT_READ
|PROT_WRITE,MAP_SHARED,ldFd,0);

auxBuf=mmap(NULL,2*AUXSIZE,PROT_READ
|PROT_WRITE,MAP_SHARED,ldFd,MAPSIZE);

fcntl(ldFd,F_SETFL,O_NONBLOCK|O_ASYNC);

ioctl(stFd,PERF_EVENT_IOC_SET_OUTPUT,ldFd);

fcntl(ldFd,F_SETOWN_EX,&owner);
fcntl(stFd,F_SETOWN_EX,&owner);
fcntl(ldFd,F_SETSIG,SIGIO);
fcntl(stFd,F_SETSIG,SIGIO);

Fig. 5. Initialization of the PMU driver for each thread.

cannot avoid using a bitmap, since objects of different sizes are
physically placed together. For each sampled memory address,
it is thus impossible to know the starting address of the object
accessed by the sample. On the other hand, Sampler does
not maintain a bitmap. As Sampler can compute the size and
starting address of the object (Fig. 4), it places the last valid
address of the object into its metadata (Fig. 2). This speeds
up the checking procedure and obviates updating the bitmap
upon (de)allocations; any access beyond this last valid address
will be considered a buffer overflow. For detecting use-after-
frees, the last valid address of the current object will be set
to one less than the current address, which treats any memory
reference on the object as a use-after-free.
B. Sampling Memory Accesses

During program execution, the PMU hardware samples the
user-level retired load and store events, and these sampled
events are then analyzed to identify buffer overflows and use-
after-frees. The PMU configuration of the sampling mecha-
nism is further described as follows.
Sampler randomly starts sampling for different threads

and during different executions, but using the same sampling
period, to avoid the same sequence of the sampled memory ac-
cesses. Sampler’s method helps capture different sequences
of memory accesses within different threads and different
executions, helping to detect as many errors as possible.

To initialize the PMU driver, Sampler utilizes the
perf_event_open() system call to set up the PMU
hardware, as illustrated in Fig. 5. Currently, Sampler is
evaluated on Intel’s Skylake architecture, where the event type
of loads is set to 0x108081d0, and the one for stores is set
to 0x82d0. There are multiple notes about this. First, every
thread should perform such initialization. The flags passed
to perf_event_open() guarantee to measure the events
of the calling thread on any core, avoiding possible effects
caused by thread migration. Second, to avoid unnecessary
interference with other threads, different threads are set to
handle the I/O signal (SIGIO) by themselves. This is achieved
by invoking the fcntl system call with the F_SETOWN_EX
flag. Third, load and store events should be initialized sepa-
rately by invoking perf_event_open() and fcntl. Both
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type of events will be dumped into the same buffer, which
simplifies their handling; however, these events can still be
differentiated by checking the “status” field of each sample’s
PEBS record. The file descriptor for load events is passed
to perf_event_open when initializing store events, and
ioctl is invoked with PERF_EVENT_IOC_SET_OUTPUT
to connect these two types of events. Fourth, mmap system
calls generate a ring buffer and an auxiliary buffer that will be
shared by the kernel and user applications, such that samples
may be obtained by reading through this shared buffer.

During the initialization, the “precise ip” attribute should
be set to the maximum value, since the instruction pointer
skid controls the number of instructions that occur between
the eventing IP and the recording of the event [46]. The CPU
attaches the timestamp to the raw sample using the value of the
TSC counter, in order to determine the temporal relationship
between each reference and corresponding free operations.

Reducing Sampling-related Overhead

Sampler takes multiple approaches to further reduce the
sampling overhead.

First, it borrows the idea of ProRace to reduce unnecessary
format translations and kernel-to-user copies [47]. Currently,
the PMU hardware automatically stores samples to a kernel-
space buffer, known as the Debug Store (DS), typically with
a size of 64KB under Linux. When the DS is nearly full, an
interrupt will be raised so that the kernel may add additional
information to each sampled event, such as wall-clock time
and sample size, generating samples in the format of “perf
events”. Then, these events will be copied to the user/kernel
shared area, which allows the user-land perf tool to analyze
them. However, this procedure involves unnecessary format-
ting to translate raw PEBS events into “perf” events, and
an unnecessary copy from the DS to the ring buffer. The
ProRace PEBS driver avoids this overhead by only storing
raw PEBS events, and designs an aux-buffer that eliminates
the additional copy from the DS area to the shared ring buffer.
Finally, the kernel sends a SIGIO signal with the POLL_HUP
flag, informing the user application that it can obtain these
samples by reading from the shared buffer. Their aux-buffer
includes two 32KB segments for PEBS events, which will
be swapped when the current segment is full. However, this
mechanism increases the complexity unnecessarily, and can
also be unstable. Sampler modifies the mechanism to use
only a single segment, but with a larger size (64KB).

Second, Sampler only analyzes the sampled events online,
without the need for saving events to disk. Typically, writing
events to disk may incur prohibitive performance overhead
caused by file I/O operations. As described above, this online
analysis also improves convenience, due to avoiding unneces-
sary offline analysis. Furthermore, from a security standpoint,
such an online analysis is rather essential to enable timely
attack detection.

Third, Sampler reduces the number of interrupts. The ker-
nel will only notify the user applications when the aux-buffer
is nearly full. Delaying the checking of memory references

may present some challenges to guaranteeing the correctness
of reports, as further described in Section IV-C.
C. Collecting Memory Samples

To avoid significant performance overhead caused by fre-
quent interrupts, Sampler accumulatively collects memory
samples in three cases: (1) when the aux-buffer is full, the
kernel notifies it using the SIGIO signal. (2) Sampler
polls the samples when the quarantine list reaches capacity.
(3) Sampler collects samples upon normal and abnormal
exits of applications.

Case (1): The signal handler will read all samples in the
aux-buffer when the buffer is full. For each sampled memory
reference within the range of the heap, the handler will check
the address, the timestamp, and the access type (load or store)
to confirm whether the current reference is a buffer overflow or
use-after-free error. The detection of memory errors is further
described in Section IV-D. Afterward, ioctl is invoked with
PERF_EVENT_IOC_REFRESH in order to resume sampling
once again.

Old Object 

Redzone 

Reference 

New Object 

Redzone 

Fig. 6. Potential False Positive with Naive Object Reutilization.

Case (2): The polling method is only invoked when the
quarantine list of any thread becomes full, where this thread
becomes the coordinator thread. As described in Section II-B2,
quarantine lists hold freed objects so that these objects are
not re-utilized too quickly. Then, any reference on these freed
objects (marked as redzones) are use-after-free errors. When
one quarantine list is full, freed objects will be actually freed
to make room for newly-freed objects. Here, the coordinator
thread notifies other threads to stop their executions and poll
existing samples simultaneously. Otherwise, false alarms can
be generated, as shown in Fig. 6. When a freed object is re-
utilized (e.g., allocated) as the “New Object”, a valid reference
on the “Old Object” will be reported as a buffer overflow,
provided that the sampled reference is processed after the
reallocation. To avoid any issues related to this, Sampler
further introduces a barrier to guarantee that all threads will
proceed to normal executions only after every thread has
finished reading all samples.

Case (3): Sampler also analyzes samples when a program
quits, including normal and abnormal exits. Sampler regis-
ters a function that will be called on normal exits, by invoking
the atexit API explicitly before entering the main routine.
Sampler also registers the signal handlers for abnormal exits,
such as the SIGSEGV signal. When exits are caused by some
program errors, Sampler prints the call stack of the faults.
For both cases, Sampler performs error detection by reading
samples using the polling method.
D. Detecting Memory Errors

For any sampled memory access, Sampler should deter-
mine whether an access is a buffer overflow or use-after-
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free error, or just a normal access. Due to a large volume of
sampled accesses – thousands per second – the error checking
should be done very efficiently. Sampler uses two mech-
anisms to accelerate the checking procedure: (1) its custom
allocator provides the “information-computable” capability,
such that the starting address of each object and its metadata
information can be computed quickly. Therefore, there is
no need to check an additional bitmap for the placement
of redzones, avoiding the loading of additional cache lines.
(2) Sampler places the last valid address of the current object
into the metadata, and the checking takes only one comparison
to determine validity: a reference on an address less than the
last valid address is considered to be valid. There is no need for
further confirmation if the reference is valid, which is true for
most references. Otherwise, we need to check errors further.

If the current object is not freed, then the invalid reference is
a buffer overflow. Sampler guarantees not to free the object
until all existing samples have been analyzed. Therefore, it
never generates false positives, as illustrated in Fig. 6. If the
object has been freed, then we should further confirm whether
it is a use-after-free error. Sampler compares the timestamp
of the reference and the corresponding free operation to de-
termine this. The PMU hardware attaches the TSC timestamp
for each event, and Sampler always records the timestamp
of free operations into the metadata of each freed object in the
quarantine list. Therefore, it is possible to compare these two
timestamps to determine whether the reference occured after
the free operation (use-after-free).

However, there are multiple potential issues here. First,
older versions of hardware (e.g. Ivy Bridge) cannot attach the
timestamps to each event, which is performed when the kernel
is interrupted to transform the events. This will generate false
positives, since the reference may contain a later timestamp
than it should. Fortunately, newer versions of hardware (at
least after Skylake) will attach the TSC timestamp for each
sampled event. This allows us to utilize the timestamp to
reliably identify use-after-frees correctly. Second, different
cores may have different TSC timestamps at the same time.
However, the difference between a pair of cores are invariant
with modern hardware support, which is known as “invariant
TSC” [48]. Therefore, Sampler evaluates the difference
beforehand, and the utilizes a reasonable value as the threshold
(around 1000). If a reference occurs within the threshold, it is
not considered a use-after-free. Conceptually, it is possible for
Sampler to miss the immediate uses after a free operation.
However, this will happen very rarely, as it requires the free
and use operations from different threads to occur very closely
in time. Use-after-free within the same thread does not suffer
from the same issue. Furthermore, there are generally multiple
accesses for use-after-free errors.
E. Reporting Memory Errors

Currently, Sampler simply reports these errors on the
screen. In the future, this report can be sent to the developers
via email, after obtaining user approval.

For use-after-free problems, Sampler reports the call
stack of memory allocation and deallocation, and the precise

instruction causing the error. For buffer-overflows, Sampler
reports the call stack of the corresponding memory allocation,
as well as the statement causing the actual overflow. Similarly,
Sampler reports the call stack when detecting double and
invalid frees.
F. Supporting Multithreaded Applications

To support multithreaded programs, Sampler intercepts
the pthread_create function in order to assign the heap
for each thread, initialize per-thread data structures, set up the
sampling mechanism, and utilize a custom function for the task
of thread creation. The custom function actually invokes the
real thread function, which also allows Sampler to capture
the exit of threads. Inside Sampler, an internal thread index
is utilized to indicate each thread.

Fetching per-thread data quickly: During every memory
(de)allocation, Sampler will obtain the index of the current
thread to allocate from and return objects to its per-thread
heap. Upon each interrupt, Sampler should also use this
index to determine the placement of a thread’s corresponding
ring buffer. Thus, there is a large number of times that we
must acquire the internal thread index. We could naively
rely on the thread-local storage area, which can be declared
using the keyword “__thread” [49]. However, this naive
method may involve at least the cost of an external library
call and a lookup in the indexed table. Instead, Sampler
borrows the method of existing work to circumvent the cost
of using TLS variables [50]. Sampler assigns the stack area
for each newly-created thread upon thread creation. The stack
area of all threads (except the main thread) will be allotted
contiguously, and the offset of each thread’s stack starting
point will be equal to the product of its thread index and
stack size. Thus, Samplercan compute the thread index by
dividing the offset between a stack variable and the starting
address of the global stack map with the stack size.

V. DISCUSSIONS

A. Detection Effectiveness
Sampler proposes a sampling-based mechanism to detect

heap overflows and use-after-frees, while it is guaranteed to
detect all double and invalid frees due to the design of its
allocator.

For heap overflows and use-after-frees, the detection effec-
tiveness is proportional to the sampling rate. For instance, if
the sampling period is 5000, then Sampler has a sampling
rate of 0.02%. Therefore, Sampler is able to detect heap
overflows and use-after-frees with a probability of at least
0.02%. In reality, both buffer overflows and use-after-frees
may incur multiple references, which explains why Sampler
has a much higher probability of detecting these errors (as
evaluated in Section VI-B).
B. Limitations

For the time being, Sampler has the following limitations.
First, Sampler does not handle buffer overflows on stack and
global variables. To support these, Sampler should instru-
ment the code in order to place redzones between different
variables, as performed by AddressSanitizer [2].
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Second, Sampler cannot detect all occurrences of memory
errors on each execution due to its sampling nature. Sampler
compromises its detection effectiveness by trading for lower
overhead, in order to be capable of deployment in production
software. However, Sampler is able to detect all bugs, given
a reasonable number of executions.

VI. EVALUATION

This section aims to answer the following questions:
• Effectiveness: Can Sampler detect memory errors in

real-world applications?
• Performance Overhead: What is the performance over-

head for Sampler, and how does Sampler’s allocator
perform separately?

• Memory Overhead: What is the memory overhead of
Sampler? How much is attributed to its allocator?

A. Experimental Setup
We performed experiments on a 4-core quiescent ma-

chine, with an Intel® Core™ i7-6700K CPU processor
running at 4.00GHz, which is a Skylake model. This ma-
chine has 16GB of main memory, and 64KB L1, 256KB
L2 and 8MB L3 cache, separately. The experiments were
performed on Linux-4.5.0, with a patch to include the Pro-
Race PEBS driver. We used GCC-5.4.0 with -O2, -g and
-fno-omit-frame-pointer flags to compile all applica-
tions. AddressSanitizer was compiled using Clang 6.0.0, and
built with detection for only heap-based overflows and use-
after-free bugs, in order to provide a fair comparison.
B. Effectiveness

We performed the effectiveness evaluation on 12 real bugs in
PHP 5.6.3, bc, gzip, polymorph, libtiff, bzip2,
and ed. The PHP interpreter is supplied with different bug-
triggering input files, which will exercise the code with dif-
ferent use-after-free errors. In total, we evaluated 12 bugs,
including one double-free, one invalid-free, five use-after-
frees, and five buffer overflows. Due to the fact that different
sampling periods could significantly affect the effectiveness,
we have evaluated three different settings: p=1000, p=5000,
and p=10000. p indicates the sampling period, which is
inversely proportional to the sampling rate. For instance,
when the sampling period is 1000, the PMU hardware will
sample one access out of every 1000 instructions. Therefore,
“p=1000” actually has the highest sampling rate (0.1%), while
“p=10000” has a sampling rate of 0.01%.

TABLE II shows the number of times that the specified bug
is detected out of 1000 executions. We observe multiple facts
from these results: (1) Sampler can always detect double
and invalid frees, regardless of sampling period. This is due
to the special design of Sampler’s custom allocator. (2) A
higher sampling rate typically implies a higher effectiveness
of detecting use-after-frees and buffer overflows. (3) Typically,
the detection rate is much larger than the sampling rate. In
general, the sampling period of 5000 presents both reasonable
overhead (as evaluated in Section VI-C) and reasonable ef-
fectiveness, which is the default sampling period. There are
no false negatives when combining 1000 executions together,

when using this sampling period. The sampling period is a
macro that users may change easily at compile time. With
this sampling period, Sampler detects use-after-frees in a
range of between 1.9% and 3.3%, with an average of 2.6%.
For buffer overflows, Sampler has a detection rate between
0.08% and 99.5%, with an average of 48.1%. If the user
would like to pay more performance overhead (less than 7%),
Sampler could use the sampling period of 1000, which will
boost the average detection rate to 6.3% and 80.5% for use-
after-frees and buffer overflows respectively. We also confirm
the reason for a high detection rate, often much higher than
expected for the sampling rate, is due to the fact that most
bugs touch redzones multiple times.

The column “First Detection” of TABLE II shows when
the corresponding bug will be first detected, with the de-
fault sampling period (5000). For use-after-free bugs, it takes
around 46 executions to detect the bugs inside, while around
98 executions are required to detect buffer overflows. Note
that Sampler may utilize different numbers of executions to
detect the bug, due to its randomization mechanism.

Probability Analysis:

We further formulate the detection probability as follows:
The bug detection can be represented by a Bernoulli trial

with two possible outcomes, “success” or “failure”, where the
probability of successful detection is fixed and each execution
is independent. Given a sampling period P and the number
of invalid accesses i that occur during an execution, the
probability of a successful detection equals:

p = 1− (
P − 1

P
)i

Therefore, we can predict the number of Bernoulli trials X
expected to obtain the first success:

Pr(X = k) = (1− p)k−1p = (
P − 1

P
)i(k−1)(1− (

P − 1

P
)i)

Further, the probability of obtaining at least k detections
given n trials can be computed using the following equation:

Pr(X ≥ k;n, p) = 1−
bkc∑
j=0

(
n

j

)
pj(1− p)n−j

In the end, the probability of obtaining a false negative
result, given a number of executions n, each with a probability
of success p, is equal to:

Pr(X = 0;n, p) =

(
n

0

)
p0(1− p)n−0 = (1− p)n

We could examine the bc bug as an example, which has
i = 32 invalid accesses. Given the parameters P = 5000, the
expected first success is around ≈ 157, while the observed
value was 292. The expected number of detections out of 1000
executions is np = 6.3802, while the actual observed value
for the number of detections was 8.

The gzip bug will have 3074 invalid accesses in total.
Therefore, the probability of observing at least 447 successes
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is approximately equal to 0.7794, given n = 1000 and
P = 5000. Further, the expected number of detections out
of 1000 executions is 459.2842, while the observed number
of successful trials was 447. Finally, the predicted first de-
tection is 2.1773, while the observed value was 1. This also
indicates that Sampler’s sampling rate is not throttled by
the underlying OS, which enables reliable performance for a
particular sampling rate.

If we examine the case of a bug such as bzip2, with a
number of invalid accesses of i = 48 and a sampling period of
P = 5000, we determine the probability of obtaining a false
negative result for n = 500 executions to equal 0.008226.
Similarly, for n = 1000 and n = 2000, these probabilities are
0.000068 and 4.5784× 10−9, respectively.

Therefore, these results indicate that Sampler is able to
detect all memory errors when combining a sufficient number
of executions together.

C. Performance Overhead
We evaluated the performance of Sampler on the PAR-

SEC [52] multithreaded benchmark suite, as well as real
applications such as Aget 0.4.1, Memcached 1.4.25,
MySQL 5.6.10, Pbzip2 1.1.6, Pfscan 1.0, and
SQLite 3.12.0.

Fig. 7 shows the performance overhead of ASan, Sampler,
and Perf, where all values in the figure represent the average of
10 executions. Both Sampler and Perf use the same sampling
period – 5000. The figure shows “Normalized Runtime” which
represents the runtime normalized to that of the default Linux
libraries. Therefore, a lower bar indicates better performance.
For these systems, ASan is the state-of-the-art in detecting
memory errors [2], which instruments every memory access
for its detection. perf is a utility that simply collects memory
references with the PMU mechanism, but without detecting
errors. Naively, perf could be employed to build the detection
tool.

Comparing to the default Linux libraries, Sampler im-
poses around 2.4% performance overhead on average, when
utilizing the default sampling period of 5000. In contrast, ASan
runs about 45% slower on average, whose high overhead indi-
cates its inapplicable usage for deployment, and the motivation
for Sampler. perf imposes over 2× performance over-
head, which indicates that the naive mechanism of employing
the PMU for detection is not sufficient. Sampler’s custom
memory allocator, its mechanisms for collecting sample data,
and its mechanism of reducing translation and kernel-to-user
copies (borrowed from ProRace) work together to reduce the
performance overhead.
Sampler only imposes overhead larger than 10% for

one application. This application is canneal, which has a
large number of memory allocations, exceeding 30 million in
total. Therefore, obtaining the call stacks of these allocations
and deallocations can be a significant source for increased
overhead. The high overhead of raytrace and swaptions
can similarly be attributed to this reason. We also observe
that Sampler actually achieves some performance speedup

for bodytrack, and near zero overhead for others, such
as facesim and streamcluster. These speedups come
from Sampler’s custom memory allocator, which can be
seen in the “SA Allocator” series of Fig. 7. To evaluate
Sampler’s allocator, we exclude all detection logic; that is,
no quarantine list, no sampling, and no collection of call stacks
for allocations and deallocations. In fact, Sampler’s allocator
is actually running 2.7% faster than the Linux allocator.
Based on our understanding, multiple factors contribute to the
excellent performance of Sampler’s allocator: it generally
avoids the use of locks for most allocations and deallocations,
and it separates metadata from the actual heap, which improves
cache utilization since the same quantity of cache will hold
more frequently-accessed data, rather than metadata, whose
accesses are less frequent.

Impact of Sampling Rate: Similar to the effectiveness eval-
uation, we evaluated the performance overhead of Sampler
using three different settings: p=1000, p=5000, and p=10000.
The performance results are shown in Fig. 8. For a sampling
period of 1000, the average overhead is around 6.6%, while the
overhead is 1% with a sampling period of 10000. Therefore,
users may determine their sampling rate by their performance
budget, since typically more frequent sampling indicates a
higher overhead, but with the better effectiveness (as shown
in TABLE II).
D. Memory Overhead

The memory overhead of Sampler was evaluated using
the same applications as the performance evaluation, with
the default sampling period—5000. To our understanding,
different sampling rates will not significantly affect the mem-
ory overhead, which is why we only include an evaluation
for this sampling period. Memory consumption is collected
via the Linux time utility. For server applications that do
not terminate, we implement a script to periodically obtain
the /proc/PID/status files, then display the maximum
resident set size (RSS) of the process throughout its lifetime.

Memory Overhead (MB)
Applications ASan Linux SA Alloc. Sampler
blackscholes 702 627 632 633
bodytrack 367 34 384 432
canneal 1933 963 1042 1721
dedup 1495 1486 2193 2326
facesim 3281 318 391 481
ferret 408 59 106 134
fluidanimate 401 400 415 423
freqmine 907 869 1081 2621
raytrace 1945 1162 1917 2247
streamcluster 184 114 118 123
swaptions 383 7 8 31
vips 360 32 33 61
x264 424 165 179 204
Aget 20 2747 4397 5923
Memcached 26 6 8 8
MySQL 302 106 152 173
Pbzip2 351 245 272 274
Pfscan 485 423 426 427
SQLite 464 9 14 77
Total 14438 (205%) 7028 (100%) 9376 (134%) 12402 (176%)

TABLE III
MEMORY OVERHEAD (IN MB) FOR APPLICATIONS USING

ADDRESSSANITIZER, THE DEFAULT LINUX LIBRARIES, SAMPLER’S
ALLOCATOR, AND SAMPLER (WITH A SAMPLING PERIOD OF 5000).
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# Detections
Application Type Bug P=1000 P=5000 P=10000 First Detection
PHP 5.6.3 Double free CVE-2016-5772 1000 1000 1000 1
PHP 5.6.3 Use-after-free CVE-2016-6290 45 19 1 19
PHP 5.6.3 Use-after-free CVE-2016-5771 94 26 1 96
PHP 5.6.3 Use-after-free CVE-2016-3141 64 27 1 59
PHP 5.6.3 Use-after-free CVE-2015-6835 57 33 8 29
PHP 5.6.3 Use-after-free CVE-2015-0273 56 26 6 37
bc 1.06 Buffer overflow Bugbench [51] 26 8 0 292
bzip2 1.0.3 Buffer overflow Bugbench [51] 999 853 861 1
gzip 1.2.4 Buffer overflow Bugbench [51] 1000 447 124 1
libtiff 4.0.1 Buffer overflow CVE-2013-4243 999 995 977 1
polymorph 0.4.0 Buffer overflow Bugbench [51] 1000 105 2 193
ed 1.14.2 Invalid free CVE-2017-5357 1000 1000 1000 1
AVERAGE 528.33 378.25 331.75 60.83

TABLE II
DETECTION EFFECTIVENESS RESULTS FOR SAMPLER USING 1000 EXECUTIONS. SAMPLER NEVER REPORTS FALSE POSITIVES USING THE NEWEST

HARDWARE SUPPORT AND WITH THE ASSISTANCE OF ITS CUSTOM ALLOCATOR. “FIRST DETECTION“ INDICATES THE EXECUTION IN WHICH SAMPLER
(USING P = 5000) FIRST DETECTS THE BUG.

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

2 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

blackschol
bodytrack 
canneal 
dedup 
facesim

 
ferret 
fluidanim

at
freqm

ine 
raytrace 
stream

clust
swaptions 
vips 

x264 

Aget 

M
em

cache
M

ySQL 
Pbzip2 
Pfscan 
SQLite 

AVERAGE 
N

or
m

al
iz

ed
 R

un
tim

e 

ASan Default SA Allocator Sampler(5k) Perf(5k) Dummy 
6.0 4.7 8.1

Fig. 7. Performance overhead of AddressSanitizer (ASan), Sampler’s allocator (SA Allocator), Sampler, and Perf when comparing to the default Linux
libraries (Default).

The results of memory overhead are shown in TABLE III.
In total, Sampler imposes around 76% memory overhead,
while Sampler’s allocator imposes 34% memory overhead,
when comparing to the default Linux allocator. The state-of-
the-art, ASan, imposes over 2× memory overhead for the same
applications. This indicates Sampler’s memory overhead is
still acceptable compared to the state-of-the-art. We also no-
ticed that Sampler adds a high percentage of startup memory
overhead for small-footprint applications (e.g. swaptions).
However, for applications with a larger footprint, the memory
overhead is typically reasonable, and adjustable using the
quarantine list configuration parameters.

Comparing to the Linux allocator, the Sampler allocator
utilizes additional memory to store free list pointers, and
always allocates objects in power-of-two sizes, which adds
some alignment overhead. To this, Sampler adds around
42% memory overhead. Both the per-thread quarantine lists

and allocator metadata will contribute to Sampler’s memory
overhead. Because the size of the quarantine list is customiz-
able, the actual overhead may vary depending on different
configurations, and is easily tunable to achieve an optimal
result. By default, Sampler utilizes a 16MB or 2048-object
quarantine list.

VII. RELATED WORK

A. Detecting Memory Errors
We focus on dynamic tools, and classify them as follows.
Dynamic Instrumentation: Numerous tools use dynamic

instrumentation, including Valgrind’s Memcheck tool [9], Dr.
Memory [6], Purify [7], Intel Inspector [8], and Sun Dis-
cover [10]. Although these tools may use different dynamic
instrumentation engines [9], [53], [54], they share an obvi-
ous advantage in that there is no need for recompilation or
modification of programs. However, two serious shortcomings
still prevent their adoption in production software: (1) they
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Fig. 8. Performance overhead for Sampler utilizing a series of increasing sampling periods.

typically have very high performance overhead. For instance,
Valgrind runs 20× slower [9], and Dr. Memory introduces
around 10× runtime overhead [6]. (2) Normal users may still
not have the expertise to use these tools.

Compiler-based Analysis and Instrumentation: Many
tools utilize the compiler to perform static analysis at first, then
instrument correspondingly to reduce the overhead [2], [11]–
[15], [55], [56]. The state-of-the-art of this approach, Address-
Sanitizer [2], imposes around 73% performance overhead.
However, this overhead is still too high to be employed in
a production environment. Delta pointer detects both contigu-
ous and non-contiguous overflows by carefully manipulating
pointer arithmetic operations [56]. However, these tools cannot
detect errors in code with no instrumentation in place.

Interposition: Multiple prior approaches use a mixture of
library interposition and virtual memory techniques to detect
memory errors [16], [19], [57]–[64]. DoubleTake [16] and
iReplayer [20] employ the evidence-based approach to detect
heap overflows and use-after-frees, where iReplayer surpasses
DoubleTake by supporting multithreaded applications. They
implant canaries in original executions, check the evidence
upon the end of epochs, and detect root cause of memory
errors using identical re-executions (when the evidence of
memory errors is discovered). They impose around 5% record-
ing overhead for programs without memory errors. However,
they only detect write-based failures, and cannot support mul-
tithreaded programs with ad-hoc synchronizations. Sampler
detects both write-based and read-based errors with similar
overhead, and supports all applications without any issue.

Page Protection: There is a body of work that leverages
a page protection mechanism to achieve memory safety [65]–
[69] at the expense of increased TLB pressure and perfor-
mance overhead. The most efficient work, Oscar [66], opti-
mizes virtual page management overhead, but still imposing
40% performance overhead. It only supports temporal memory

safety such as use-after-frees. In contrast, Sampler supports
a broader spectrum of memory errors at a much lower cost.
B. Sampling-Based Detection

There exist some approaches that utilize a sampling-based
technique to detect other software bugs, such as race con-
ditions [4], [70], [71] and memory leaks [32], [72], [73].
However, none of them focus on the same memory errors as
Sampler.

VIII. CONCLUSION

This paper proposes PMU-based sampling to detect buffer
overflows and use-after-free errors, rather than validating every
memory reference as in existing work. Further, Sampler
utilizes a novel custom allocator to avoid false alarms and
improve its performance. Based on our evaluation, Sampler
only imposes less than 3% performance overhead, while
detecting all known bugs within a reasonable number of
executions. Sampler is the first work that simultaneously sat-
isfies efficiency, precision, completeness, accuracy, and trans-
parency, which makes it a good candidate for in-production
use.
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