
UNDEAD: Detecting and Preventing
Deadlocks in Production Software

Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai∗ and Tongping Liu
Department of Computer Science, University of Texas at San Antonio, USA

∗State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
Jinpeng.Zhou@utsa.edu, Sam.Silvestro@utsa.edu, liuhyscc@gmail.com, ycai.mail@gmail.com, Tongping.Liu@utsa.edu

Abstract—Deadlocks are critical problems afflicting parallel
applications, causing software to hang with no further progress.
Existing detection tools suffer not only from significant recording
performance overhead, but also from excessive memory and/or
storage overhead. In addition, they may generate numerous
false alarms. Subsequently, after problems have been reported,
tremendous manual effort is required to confirm and fix these
deadlocks.

This paper designs a novel system, UNDEAD, that helps
defeat deadlocks in production software. Different from existing
detection tools, UNDEAD imposes negligible runtime performance
overhead (less than 3% on average) and small memory overhead
(around 6%), without any storage consumption. After detection,
UNDEAD automatically strengthens erroneous programs to pre-
vent future occurrences of both existing and potential deadlocks,
which is similar to the existing work—Dimmunix. However,
UNDEAD exceeds Dimmunix with several orders of magnitude
lower performance overhead, while eliminating numerous false
positives. Extremely low runtime and memory overhead, conve-
nience, and automatic prevention make UNDEAD an always-on
detection tool, and a “band-aid” prevention system for production
software.

I. INTRODUCTION

The lock is possibly the most widely used synchronization
primitive in multithreaded programs. It ensures that, at any
time, at most one thread is allowed to execute inside a critical
section. Common programming practice utilizes different locks
to protect different shared data in order to avoid unnecessary
conflicts, which may easily cause a notorious concurrency
problem — deadlock.

Generally, deadlocks can be divided into two types: resource
deadlocks and communication deadlocks [1]. This paper only
deals with resource deadlocks that are caused by locks, without
involving signals or other communication mechanisms (e.g.,
shared buffer). Deadlock occurs when a set of competing
threads are simultaneously waiting for a lock held by their
competitors, as shown in Figure 1. In this example, thread T1

has acquired lock l1 and waits for lock l2. However, thread
T2 has acquired lock l2 and waits for lock l1. This situation
prevents the program from making any further progress [1],
[2]. Since deadlocks (as well as other concurrency bugs)
only occur under specific inputs and with a precise timing
requirement (e.g., two threads should acquire their first locks
simultaneously), they cannot be completely expunged during
development phases due to incomplete tests. They may be
unavoidably leaked into deployed software, which may result

𝑙"

𝑇"𝑇$

𝑙$

Fig. 1. A simple deadlock example.

in unpredictable losses, as programs must be restarted when
deadlocks occur. Deadlocks continue to be a serious concern,
accounting for more than 30% of reported concurrency bugs [3].

A significant amount of work focuses on detecting deadlocks
using static and dynamic approaches. Static detection tools,
such as [4], [5], may report numerous false positives, and are
difficult to scale to large programs [6]. Dynamic techniques
primarily focus on detecting potential cycles within the execu-
tion trace [1], [7], [8], [9], [10]. Existing dynamic approaches
have the following problems. First, existing systems record the
full execution context, including call stacks and the order of
all lock acquisitions and releases, which imposes significant
overhead in the recording phase. For instance, the performance
overhead of DeadlockFuzzer [1] is between 3× and 12×.
Second, the execution trace can be extremely large for long-
running applications (e.g., server applications), thus leading to
unaffordable memory and/or storage overhead. Third, detecting
potential cycles within a large execution trace may require a
considerable amount of time, as long as two days [11]. Together,
these shortcomings prevent existing detection techniques from
gaining widespread adoption within deployed systems.

Some approaches aim to fix known deadlocks [12], [13],
[14], [15], [16] by relying on the precise information of
deadlocks that is difficult or impossible to obtain currently
(due to the problems discussed above), and they may require
additional manual effort (e.g., recompilation) before users can
actually prevent problems. Also, many existing techniques may
additionally generate new deadlocks through the introduction
of gate locks, as discovered by DFixer authors [16].

Dimmunix pioneers the combination of detection and pre-
vention in a single system, without involving additional manual
effort [17]. For detection, Dimmunix employs a monitor thread
to periodically check (100ms by default) whether recent locks
generate a cycle of lock acquisitions. If so, Dimmunix stops a
susceptible program immediately and outputs the signature of
locks into a persistent file used to guide its prevention during
future executions. To prevent deadlocks, Dimmunix obtains the

978-1-5386-2684-9/17$15.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

729

call stacks (by invoking the very slow backtrace API) upon
every lock acquisition, and confirms whether this acquisition
matches one of the known deadlock patterns. If so, the current
thread will be forced to wait. For every lock release, Dimmunix
checks whether a potential deadlock has been broken. If so, it
may wake other threads waiting for the release event of this
lock. Dimmunix allows a deadlock-prone system to function
correctly while developers are fixing these discovered bugs,
which is a very interesting and helpful idea that could be
potentially suitable for the deployment environment. However,
Dimmunix suffers from a large number of false positives (a fact
that is self-acknowledged [17]), incurs large runtime overhead
(as high as 726× slower, based on our evaluation), and could
possibly miss some deadlocks, as it only checks recent locks.
These serious limitations prevent Dimmunix from actually
being deployed in production software.

This paper presents a novel system, UNDEAD, to defeat
deadlocks in production software. It shares the same target
as Dimmunix: it can detect deadlocks, and protect a program
immediately and automatically whenever potential or actual
deadlocks are found during prior executions. UNDEAD makes
several key design choices to reduce overhead and improve
accuracy of detection, and also proposes a novel, lock-variable-
based approach to prevent deadlocks automatically. All of these
details are further described in Section II.

A. Contributions

Overall, UNDEAD makes the following contributions:

1) UNDEAD provides an efficient and effective detection
tool: UNDEAD’s detection tool imposes only negligible
performance overhead, less than 3% on average, and
avoids the significant number of false positives. It only
adds 6% memory overhead in total.

2) UNDEAD proposes a novel, lock-variable-based ap-
proach to prevent deadlocks: This novel approach
supports deadlock prevention based on an incomplete
execution trace: any call stacks related to these lock
variables – even non-exercised call stacks – will be unable
to cause the deadlock. UNDEAD’s prevention can also
be seamlessly integrated with its detection, without any
manual intervention.

3) We performed substantial evaluation on existing bench-
marks and real applications, and compared it with
existing work: Evaluation results confirm the efficiency
and effectiveness of UNDEAD.

B. Outline

The remainder of this paper is organized as follows. Sec-
tion II first describes the background of deadlocks, as well
as the basic idea of UNDEAD. Section III and Section IV
describe the implementation of UNDEAD’s detection and
prevention mechanisms, respectively. Then, Section V presents
experimental results. In the end, we discuss the related work
in Section VI, and conclude in Section VII.

II. OVERVIEW

A. Background of Deadlocks

As described in Section I, deadlocks occur when the
relationship between threads and locks generates a cycle.
Deadlocks may be easily diagnosed by experts when they
actually occur. Experts could attach a debugger to the hanging
process, check the call stacks of lock acquisitions made by each
thread, then possibly infer the exact causes of the deadlock.
However, this discovery process requires expert knowledge and
is not suitable for normal users in the production environment.
More importantly, this discovery can only uncover actual
deadlocks, while leaving behind potential deadlocks that may
incur unpredictable losses in a deployed environment.

Based on our observation, deadlocks have the following key
properties.

1) Only nested locks are capable of producing deadlocks,
since a single-level lock will not be involved in a hold-
and-wait situation, and thus will not generate a circle
(as shown in Figure 1). In reality, the majority of lock
acquisitions are not nested (without lock dependencies),
but rather single-level locks. This fact is further confirmed
by the statistics listed in Table I.

2) Deadlocks are very sensitive to timing, and only occur
when all participating threads can successfully acquire
their first locks prior to any thread subsequently request-
ing an additional lock. As illustrated in Figure 1, if one
thread can first acquire both locks l1 and l2 successfully —
which may cause the competing thread to fail to acquire
its first lock — the deadlock will not occur.

B. Deadlock Detection

UNDEAD’s detection aims to detect deadlocks for use by its
prevention system, as well as for normal users, while keeping
low performance and memory/storage overhead. UNDEAD
makes several design choices to achieve this target.

We make the first key observation: a program typically only
has a bounded number of unique lock dependencies, although
a program may execute for a long time. This key observation is
further confirmed via extensive experiments, where the results
are shown as Table I. The lock dependency is first introduced
by prior work DeadlockFuzzer [1], as discussed in more detail
in Section III-C. When a program has n distinct locks, the
maximum number of unique lock dependencies consisting of
two locks will be equal to the permutation P (n, 2). In reality,
the actual number is even lower than this maximum number.
Although the bounded property may not hold if a program
dynamically creates and destroys locks, we did not find such
cases in our experiments.

Firstly, based on this key observation, UNDEAD only records
unique lock dependencies (under nested locks) for every thread
during the execution, instead of recording the entire history of
lock acquisitions and releases. It will skip all duplicated lock
dependencies. Note that this will not compromise detection ef-
fectiveness, as all distinct lock dependencies (with their unique
call stacks) are still recorded completely, which can achieve

730

the same guarantee as existing work. This method prevents an
ever-increasing trace log for long-running applications; instead,
the size of the execution trace becomes stable after seconds or
minutes of execution. A small execution trace greatly reduces
not only the memory/storage requirement, but also the amount
of time required for the detection.

Secondly, UNDEAD also avoids unnecessary information
during the recording phase. Single-level locks are never
recorded because they will never cause potential deadlocks, as
Property 1 discussed in Section II-A. UNDEAD also discards
lock acquisition events when only a single thread exists, since
deadlocks typically involve more than one thread.

Thirdly, UNDEAD minimizes the overhead of collecting
call stacks. UNDEAD utilizes the following two methods to
reduce the overhead. (1) UNDEAD does not fetch the call
stacks of first-level locks. This method reduces a large number
of backtrace invocations, but creates some inconvenience.
Although UNDEAD reports the address of locks involved in
deadlocks, as well as where threads are hanging, it cannot
report statements where the first-level locks were acquired.
Users are required to manually identify the information of
first-level locks for the purpose of detection. However, this
problem will not affect UNDEAD’s prevention. (2) UNDEAD
further avoids invocations of backtrace, when both stack
offset and lock address of a lock acquisition are the same
as existing ones. Stack offset is utilized here, since different
threads may possess the same stack offset for the same call
stack. It is possible (although unlikely) that two different call
stacks will have the same stack offset, where users may have to
identify correct call stacks manually. Again, this shortcoming
only affects the reporting functionality, and will not reduce the
effectiveness of UNDEAD’s detection and prevention.

C. Deadlock Prevention

UNDEAD starts from a novel observation concerning the
prevention of deadlocks: replacing multiple locks (within the
same deadlock set) with the same lock eliminates the possibility
of deadlock (shown in Figure 4). Replacing multiple locks in the
same deadlock set mimics the effect of using a coarse-grained
lock, rather than using multiple fine-grained locks. This method
eliminates the timing property of deadlocks. In the example
shown in Figure 1, when two locks (l1 and l2) are actually
using the same lock l12, the deadlock will never occur. If one
thread acquires lock l12 successfully, it will prevent another
thread from acquiring the same lock due to the exclusivity
property of mutex locks.

This method is significantly different from signature-based
approaches [14], [16], [17], [18]. For signature-based ap-
proaches, they require call stacks of all lock acquisitions that
are involved in a deadlock, so that they can explicitly locate
and fix buggy acquisitions to avoid possible deadlocks. They
cannot prevent deadlocks if a single statement is neglected to be
changed. Compared with these approaches, UNDEAD supports
prevention based on an incomplete execution trace: as long as
some call stacks of suspect lock variables are detected to have
potential deadlocks, any call stacks consisting of these variables

– even call stacks not encountered in previous detection – will
be unable to cause the deadlock. UNDEAD replaces all of these
locks with the same physical lock during the initialization phase,
and prevents any possible deadlock afterwards. Also, UNDEAD
requires no change to the program and no re-compilation,
while the prevention can be enabled automatically during future
executions. UNDEAD also has one advantage when compared to
Dimmunix, a signature-based approach requiring no additional
manual effort. UNDEAD significantly reduces the prevention
overhead, since there is no need to check the signature on
every lock acquisition and release.

Performance Concern: This naturally raises a concern with
respect to the performance impact: that is, whether merging
multiple locks into the same lock will significantly increase lock
contention. In practice, lock contention may not be substantially
increased due to the following two reasons. First, deployed
software has been extensively tested, and typically will not
contain a large number of deadlocks inside. This fact will
limit the number of distinct locks that should be merged.
Second, all locks belonging to the same deadlock set are
less likely to be acquired frequently, since deadlocks caused
by frequently-acquired locks are most likely to have been
eliminated during development phases. Evaluation results in
Section V confirm that UNDEAD only introduces around 3%
performance overhead, which is comparable to the state-of-the-
art—DFixer [16].

Thread 1 : Thread 2 :
1 : Lock l1 ; Lock l3 ;
2 : / / I n t e r m e d i a t e l o c k Lock l2 ;
3 : Lock l3 ;
4 : Lock l2 ;

Fig. 2. A potential new deadlock due to the lock merge.

Thread 1 : Thread 2 :
1 : Lock l1 ; Lock l1 ;
2 : Lock l2 ; Unlock l1 ;
3 : Cond_wait (cond , l2) ; Lock l2 ;
4 : Unlock l2 ; C o n d _ s i g n a l (cond) ;
5 : Unlock l1 ; Unlock l2 ;

Fig. 3. Atomicity violation due to the lock merge.

Correctness Concern: We have identified two possible
correctness issues related to lock merging, shown as Figure 2
and Figure 3. Figure 2 shows an example of a potential new
deadlock. In this example, the acquisition of lock l3 is located
between l1 and l2 in Thread 1, and Thread 2 will acquire l3
before acquiring l2. When l1 and l2 are merged into a new
lock l12, it may create a potential deadlock caused by the lock
set of {l12, l3}. Figure 3 shows another example in which the
merging of l1 and l2 may cause an atomicity violation. Thread
1 should release the merged lock l12 at the invocation point
of Condwait (line 3 of Thread 1), and can possibly violate
the original atomicity semantics since other threads may be
able to acquire the lock l1 in the middle. However, invoking
a conditional wait while holding two locks is actually a well-
known deadlock pattern reported by existing work [8], [19].

731

Original Program

Lock Object
1

0x60000 00

Lock Object
2

0x60000 28

…

0x60000 50

With Prevention
0x60000 00

0x60000 28

…

0x60000 50

Shared Lock
1

0x12340C0000 00

…

0x12340C000000

0x12340C000000

0x60000 08

0x60000 30 Redirection

Fig. 4. The idea of deadlock prevention.

In Figure 3, Thread 2 may never acquire l1 successfully, and
would subsequently be unable to wake up Thread 1.

UNDEAD provides the following guarantees for these two
correctness concerns: (1) All locks (e.g., l3 of Figure 2)
occurring in the middle of a known deadlock set (e.g., {l1, l2}),
and which may potentially cause deadlocks, will be merged
into the same deadlock set. Thus, the situation listed as Figure 2
will never create new deadlocks, if such a lock acquisition
(e.g., l3) has been observed during previous executions. (2) For
cases such as Figure 3, UNDEAD only reports the deadlocks to
users, but never performs automatic prevention. Thus, it does
not introduce potential atomicity violations. All conditional
waits inside nested locks are recorded to avoid this problem.

III. DEADLOCK DETECTION

For deadlock detection, UNDEAD first records necessary
lock-related events during executions (Section III-A). Then,
it can detect actual deadlocks periodically (Section III-B), or
detect actual and potential deadlocks on program exit, or upon
receiving instruction from users (Section III-C).

A. Logging Phase

UNDEAD logs only necessary lock-related information. It
prunes all unnecessary information during the logging phase, in-
cluding single-level locks, unnecessary lock acquisitions during
the single-threaded period, and duplicated lock dependencies.

UNDEAD intercepts mutex lock operations, including locks,
unlocks, and try locks. For try locks, UNDEAD only
records successful acquisitions. UNDEAD also records the
conditional waits inside nested locks in order to avoid the
problems listed in Figure 3. Additionally, UNDEAD obtains
call stacks of mutex initializations, as this information will
be employed by its prevention system to accomplish deadlock
prevention (Section IV).

UNDEAD collects the call stacks of lock acquisitions using
backtrace [20], but handles it differently from all existing
work. UNDEAD maintains the number of locks held by each
thread separately. It does not obtain the call stacks of first-level
locks, but rather simply records the addresses of these locks.
When a thread is acquiring more than one lock, UNDEAD
first confirms whether the corresponding lock dependency
already exists. If the lock dependency exists, UNDEAD further
determines whether it is necessary to obtain the call stack
for the purpose of reporting. Currently, UNDEAD confirms
whether both stack offset and lock address (inside the lock
dependency) of a lock acquisition are the same as existing ones,
since acquiring the call stack using backtrace can be very

expensive. If both of these values and the lock dependency are
the same, UNDEAD does not obtain the call stack for this lock
acquisition.

The combination of the stack offset and the lock address is
generally an adequate indicator of the call stack, as the chance
of sharing the same stack offset and lock address, but with a
different call stack, is extremely low. The only situation with
confusion is when there are multiple acquisitions of the same
lock within the same function. For this case, users may be
required to check all lock acquisitions inside the same function
manually, if they would like to identify which acquisition is
involved in the deadlock. Note that UNDEAD’s prevention
mechanism does not rely on the call stacks of acquisitions,
and requires no manual effort. The reason why UNDEAD uses
the stack offset is that multiple threads inside a multithreaded
program have the same offset, but different absolute addresses.
If the call stack is new, UNDEAD additionally records it. The
call stacks of lock acquisitions could be utilized by existing
prevention tools [14], [16], [17], [18], or used to facilitate
manual fixes.

In the implementation, all lock dependencies associated with
each thread are stored in a per-thread hash table for performance
reasons. This method may introduce slightly more memory
overhead used to hold unique lock dependencies, but avoids
concurrent accesses from multiple threads. Also, it eliminates
the necessity of using locks to protect the actions of searching
and adding new lock dependencies. To save lock dependencies,
UNDEAD utilizes the combination of two locks as the key for
the hash table. For instance, if lock l1 is dependent on locks
{l2, l3}, UNDEAD utilizes the XOR value of the addresses
of the two most internal locks (e.g., l1 and l2 here) as the
search key. This method substantially reduces conflicts on hash
keys, and thus considerably reduces the number of comparisons
required to check the duplicates of a lock dependency.

UNDEAD also improves the performance of obtaining per-
thread data. During development, we discovered significant
performance overhead associated with retrieving per-thread
data upon every intercepted function invocation, if we simply
utilized the thread-local storage area (declared using the
keyword “__thread”) [21]. When using thread-local storage,
the system assigns a unique global ID to each thread-local
variable, and maintains a Thread Local Storage (TLS) lookup
table for all threads. Searching the thread-local area involves
at least the cost of an external library call, as well as a lookup
in the indexed table. Thus, UNDEAD proposes a novel method
to circumvent the cost of using TLS variables. Because every
thread will be allotted its own stack, the address of a stack
variable can be utilized to identify a particular thread. Thus,
UNDEAD initially allocates a global map, which will be used
to create the stack areas for every thread. Upon creation of each
thread, UNDEAD assigns a specific stack area to the thread
based on its internal thread index, such as 8MB per thread by
default. During execution, UNDEAD is able to compute the
thread index by dividing the offset between the address of a
stack variable and the starting address of the global stack map
with the stack size. With the computed thread index, UNDEAD

732

can efficiently obtain the per-thread data from a shared global
array.

B. Periodic Detection

UNDEAD creates a monitor thread to perform detection
periodically during normal executions, which is similar to
existing work [22]. This option allows UNDEAD to timely
detect deadlocks in long-running applications.

Every thread maintains its own current locking set. The
monitor thread is awakened periodically. Upon waking up,
the monitor thread takes a snapshot of the current locking
set for each thread, and utilizes the simple loop detection (as
shown in Figure 1) to check whether there is a cycle inside.
If a cycle is found, the monitor thread will confirm again
whether the current lock-holding status of related threads has
been changed. The same status indicates that the program is
actually in deadlock status, and cannot proceed. Otherwise, it
is a potential deadlock that may not actually occur. UNDEAD
allows a program with a potential deadlock to proceed as
normal. Note that UNDEAD does not change the original lock
logic for periodic detection, which simplifies implementation
and possibly benefits performance. Instead, UNDEAD utilizes
another confirmation to avoid any possible false positives
caused by using the snapshots. If a deadlock is actually detected,
UNDEAD further performs comprehensive detection to identify
any other potential deadlocks, as discussed in Section III-C.

C. Comprehensive Detection

UNDEAD performs comprehensive detection when the
program is about to exit, or when it receives special instructions
from users. As discussed above, UNDEAD only keeps unique
lock dependencies, and prunes all unnecessary information.
This reduces UNDEAD’s detection time due to handling many
fewer items.

1) Intercepting Exits and User Instructions: A program
may terminate in various ways. Aside from exiting normally, a
program may exit by explicitly calling abort, or due to failed
assertions or other program errors such as segmentation faults.
UNDEAD handles these different exit patterns. To intercept
normal exits, UNDEAD places the detection procedure within a
function marked with the destructor attribute. Furthermore,
UNDEAD also registers a signal handler for signals such as
SIGHUP, SIGQUIT, SIGINT, and SIGSEGV, from which it
invokes exit(), such that the default exit handler will then
be invoked. Additionally, users may send a special signal using
the SIGUSR2 signal number to invoke the detection procedure
on-demand.

2) Detection Algorithm: UNDEAD utilizes the known
deadlock detection method, iGoodLock, which was proposed
by DeadlockFuzzer [1] and extended by MagicFuzzer [9].
However, the idea of pruning unnecessary information is novel
to this paper, which is the key reason that UNDEAD keeps a
low performance and memory/storage overhead, and is different
from these existing works [1], [9].

iGoodLock defines the following basic concepts:

• “Lock dependency”: A triple D = {t, l, L} indicates that
a thread t is waiting for lock l while holding all locks in
set L.

• “Lock dependency chain”: A sequence of lock depen-
dencies, C = 〈D1,, Dk〉, describes a relationship
among the lock dependencies of multiple threads: (1)
each lock dependency inside C is from a distinct thread.
(2) ∀i 6= j, Li

⋂
Lj = ∅, which means no locks are

held in common by any distinct pair of threads. (3)
∀i ∈ [1, k − 1], li ∈ Li+1, which indicates the (i + 1)th

thread has already acquired the lock li, which the ith

thread is trying to acquire.
• “Cyclic lock dependency chain”: A cyclic chain is a

special type of lock dependency chain, where lk ∈ L1 in
order to form a circle.

As described above, each thread records its own lock
dependencies within its own per-thread hash table, which
eliminates the necessity of including the thread information
from the lock dependency. For detection, UNDEAD searches for
lock dependency chains by checking all possible permutations
of lock dependencies among two threads, then three threads, and
so on. UNDEAD utilizes a depth-first algorithm to iteratively
explore dependency chains. If there exist lock dependency
chains, UNDEAD further checks for cycles within these
dependency chains. A cyclic dependency chain indicates a
potential deadlock problem, which UNDEAD will report in the
end.

3) Reporting Deadlocks: UNDEAD generates two different
reports: one for normal users or signature-based prevention
systems, the other for its prevention system.

For the first report, UNDEAD reports all information nec-
essary to assist deadlock fixes, such as the call stack (with
source code line information) of initialization and acquisitions
of each involved lock, not including first-level locks, and the
address of all involved locks. Programmers can proceed to fix
these discovered deadlocks based on UNDEAD’s report.

For its prevention system, the report currently takes the
format of a text file, in which every deadlock set is separated
by a special symbol. When multiple deadlock sets exist,
UNDEAD further confirms whether or not they share any
common locks. If true, UNDEAD merges various lock sets
containing the common lock into the same deadlock set, which
will utilize the same physical lock in prevention. For the
example of Figure 2, l3 will be merged into the same deadlock
set of {l1, l2}. Inside the same deadlock set, each entry on
a separate line will represent a different lock, the format
for which appears as such: lock address: initialization call
stack. If a lock is a global variable that is initialized via the
PTHREAD_MUTEX_INITIALIZER macro, its initialization
call stack will be empty. Thus, UNDEAD’s prevention system
can handle them accordingly. Depending on the preferences
of the user, UNDEAD may skip a deadlock set that contains a
conditional wait while holding multiple locks.

733

D. Limitations

UNDEAD may experience false negatives. Like other dy-
namic tools, UNDEAD cannot detect deadlocks if the corre-
sponding code is not exercised. Currently, UNDEAD cannot
detect resource deadlocks caused by conditional variables.
Similar to existing work [1], [7], [8], [9], [10], UNDEAD
does not recognize other types of locks, such as spin locks or
read/write locks, which will be a focus of our future work.

In theory, UNDEAD can produce false positives as well.
When two lock sets have a strong happens-before relationship
which prevents their concurrent appearance, such as those
ordered by conditional waits or barriers, UNDEAD may
incorrectly generate false alarms. However, experimental results
in Section V-D confirm that UNDEAD is very effective at
capturing potential deadlocks in reality, without any false
alarms.

IV. DEADLOCK PREVENTION

This section describes how UNDEAD’s prevention system
works automatically, based on its detection results.

UNDEAD’s detection system reports potential deadlocks,
where different lock sets are separated using a special symbol
in the deadlock history file. As discussed in Section II-C, all
locks within the same deadlock set are redirected into the
same physical lock, as shown in Figure 4, which eliminates
the deadlock problem.

For the example shown in Figure 1, if lock l1 and lock l2
are replaced with a new lock l12, then T1’s acquisition of l1
(now l12) will prevent T2’s acquisition of l2, due to their uses
of the same lock l12. Therefore, it is impossible to generate a
circle, preventing the deadlock caused by lock l1 and lock l2.
As shown in Figure 4, the new shared lock l12 will be allocated
from an easily identifiable memory-mapped region, such as a
continuous region starting from 0x12340C000000. UNDEAD
will store the address of l12 into the first word of both l1 and l2.
Originally, this word includes two fields, __lock (the lock state)
and __count (the number of recursive locks), which should not
fall into the special range discussed above. Thus, when the first
word of a lock falls within the special range, it is a pointer to
a shared lock. UNDEAD then forces the lock acquisition onto
the shared lock. This redirection mechanism is adapted from
our existing work—SyncPerf [23].

The detailed implementation is discussed as follows.

A. Implementation

1) Initialization: One type of lock variables are initial-
ized via the PTHREAD_MUTEX_INITIALIZER macro, while
another type are initialized by explicitly invoking a mutex
initialization procedure. Locks of the first type have no call
stacks inside the deadlock history file, and these locks can
only be global variables. Therefore, they will be redirected
before entering the application’s main routine. UNDEAD sets
its initialization function with the constructor attribute in
order to perform this initialization before entering into the main
routine. For the other type of locks, UNDEAD intercepts the
initializations of all locks, and confirms the call stack of these

initialization invocations. When an initialization has the same
call stack as those listed in the deadlock history file, UNDEAD
redirects it appropriately, as shown in Figure 4.

2) Redirection: During prevention, UNDEAD intercepts
every lock acquisition and release, as well as conditional
waits. It checks whether the lock’s first word falls within
the special range. If so, UNDEAD redirects the operation to
the shared lock. Otherwise, it simply performs the operation
on the original pthread_mutex_t object. At every lock
acquisition and release, the overhead imposed by UNDEAD
is limited to a fetching operation and a checking operation,
which is significantly lower than that of Dimmunix.

3) Handling Recursive and Irregular Locks: UNDEAD also
handles recursive and irregular locks carefully. If a lock has
been successfully acquired by the current thread, another
invocation on the same lock will fail. Therefore, a simple and
naive solution is to change the shared lock to be a recursive
one, by setting the PTHREAD_MUTEX_RECURSIVE attribute.
However, this simple solution cannot handle a program with
an irregular lock pattern, as shown in Figure 5. There is no
problem for this example initially (without the redirection
mechanism), since releasing an already-released lock, such
as l2 in Figure 5, will be silently turned into a no-operation.
However, if a recursive lock is utilized to replace these two
locks, such as l1 and l2 in the example, the code (after line 4
of Figure 5) will not be protected by any lock, which violates
the original semantics of the program.

1 : Lock l1 ;
2 : Lock l2 ;
3 : Unlock l2 ;
4 : Unlock l2 ; / / I r r e g u l a r l o c k p a t t e r n
5 : Unlock l1 ;

Fig. 5. Irregular lock pattern.

UNDEAD handles this problem by tracking the locking
count of every specific lock (with its original address) in the
deadlock sets. For every shared lock, each thread maintains a
per-thread lock count, and an array of lock counts that track the
status of all original lock variables inside the same deadlock
set. The actual shared lock will only be acquired at the first
acquisition, while subsequent acquisitions only increment the
lock count of its corresponding original lock variable. This
also helps report some potential problems of original lock
uses. If an original lock variable is acquired multiple times,
which indicates a double-lock problem in the original program,
UNDEAD can report this problem. During a release, UNDEAD
first confirms whether the local lock count is larger than 1.
If true, it decrements the local and per-thread lock counts at
the same time, and only invokes the actual release operation
when the per-thread lock count is 0. Otherwise, it simply omits
this operation and returns 0. This method matches the original
semantics.

B. Limitations

UNDEAD’s prevention is only enabled when evidence of
potential deadlocks is detected with a cyclic lock dependency

734

chain. Note that UNDEAD’s prevention does not require a
deadlock to occur.

Performance Concern: UNDEAD’s prevention can increase
the lock contention rate, thus affecting the performance of
applications by merging multiple locks into a single lock.
However, it only requires simple engineering effort to track
the contention rate of merged locks, and disable them if the
rate is higher than a specified percentage. The other candidate
is to request confirmation from users; UNDEAD’s prevention
may skip a deadlock set based on the input of users.

Correctness Concern: UNDEAD provides the guarantees as
discussed in Section II-C. In extremely rare situations, UN-
DEAD may add potential new deadlocks, or violate atomicity,
when the critical information is not observed during prior
executions. However, the deadlock and atomicity violation
may not actually occur during executions, since they are
both sensitive to timing. Also, upon the end of an execution,
UNDEAD will adjust its deadlock sets based on new evidence,
and further prevent the potential problems in future executions.

V. EVALUATION

A. Experimental Setup

We performed experiments on a 16-core quiescent machine,
with two sockets installed with Intel(R) Xeon(R) CPU E5-2640
processors. This machine has 256GB of main memory, and
256KB L1, 2MB L2 and 20MB L3 cache. The experiments
were performed on the unchanged Ubuntu 16.04, installed with
Linux-4.4.25 kernel. We used GCC-4.9.1 with -O2 and -g
flags to compile all applications.

B. Performance Overhead

For the performance overhead, we compared UNDEAD
with the only available work with similar functionality —
Dimmunix [17]. The source code of Dimmunix was down-
loaded from Google Code [24]. Because Dimmunix halts
a program immediately after detecting potential deadlocks
inside, it often cannot complete applications normally due to
many false positives. For performance comparison, we allowed
Dimmunix to run until program completion by disabling the
halting mechanism.

We evaluated 17 multithreaded applications in total.
Among these applications, ten of them are from the PAR-
SEC suite [25], while others are real applications, in-
cluding MySQL-5.6.10, Memcached-1.4.25, Apache
httpd-2.4.25, SQLite-3.12.0, Aget, Pfscan, and
Pbzip2. PARSEC applications were exercised using na-
tive inputs, with 16 threads [26]. MySQL was tested using
the sysbench application, with 16 threads and 100, 000
maximum requests. Memcached was tested using the
python-memcached script [27], but changed to loop 20
times in order to obtain sufficient runtime. SQLite was
tested using a program called “threadtest3.c” [28] and the
total amount of iterations is shown in the figure. Apache
was tested by sending 100, 000 requests via ab [29] and the
requests per second is shown in the figure. For Aget, we
collected the execution time of downloading 600MB of data

2.78 726 8.28 2.53 44.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

No
rm

al
ize

d	
Pe
rfo

rm
an

ce

Dimmunix UNDEAD-LOG UNDEAD

Fig. 6. Normalized runtime overhead of Dimmunix and UNDEAD. “UNDEAD”
lists the overhead with both detection and prevention, which is comparable
to Dimmunix’s overhead. “UNDEAD-LOG” shows the runtime overhead of
UNDEAD’s logging mechanism only.

from another quiescent server located on the local network.
For Pfscan, we performed a keyword search within 800MB
of data. For Pbzip2, we performed compression on a file
containing 150MB of data.

The average results of ten executions of these applications
are shown in Figure 6, where all values of UNDEAD and
Dimmunix are normalized to that of the default Pthreads
library. A taller bar indicates a larger overhead.

UNDEAD has two sets of performance data in Figure 6:
“UNDEAD-LOG” is a special build with logging only, where
both detection and prevention mechanisms are disabled in
order to confirm the efficiency of UNDEAD’s logging strategy;
“UNDEAD” represents the full version with all functionalities
enabled (logging, detection, and prevention). Because Dimmu-
nix combines logging with its detection and prevention, we
only show one set of data. “Dimmunix” should be compared
to “UNDEAD” in Figure 6, with the same functionality.

As shown in Figure 6, UNDEAD’s logging only intro-
duces around 1% performance overhead on average. Over-
all, UNDEAD introduces around 2.7% overhead on average
with all mechanisms enabled. For all applications, except
fluidanimate, UNDEAD’s performance overhead is less
than 6%. In contrast, Dimmunix imposes more than 44×
performance overhead on average. Without fluidanimate,
Dimmunix’s average overhead is still more than 170%.

We further collected the lock characteristics of these ap-
plications, which helps explain the performance problems of
both UNDEAD and Dimmunix. The data is shown as Table I.
The “Time” column shows the total execution time of each
application. The “Locks” column shows the number of distinct
lock objects, and the “Lock Acqs” column shows the number
of lock acquisitions. “Total” and “Unique” indicate the amounts
of all and unique lock dependencies, respectively.

UNDEAD imposes around 23% performance overhead for
the fluidanimate application, which is still orders of
magnitude lower than Dimmunix’s overhead (726×). The data
shows that this application issues approximately 1.7 billion
lock acquisitions within 30 seconds’ execution, and contains

735

TABLE I: CHARACTERISTICS OF EVALUATED APPLICATIONS

Applications Time Locks Lock Acqs Dependencies (#)
(s) (#) (#) Total Unique

blackscholes 37.6 0 0 0 0
bodytrack 26.8 7 1858970 0 0
canneal 55.9 1 15 0 0
dedup 16.6 2199 999468 0 0
facesim 72.7 17 5244475 407092 120
ferret 4.6 5 2594 0 0
fluidanimate 30 92396 1723264500 0 0
streamcluster 62.6 2 1274992 0 0
swaptions 20.1 0 0 0 0
x264 66.9 35 202776 0 0
Aget 5.5 2 147110 0 0
Apache 23.6 105 1454437 0 0
Memcached 4.6 30 50427 18208 53
MySQL-5.6.10 44.6 651 20049715 887 113
Pbzip2 1.47 20 2350 340 3
Pfscan 1.16 2 36 0 0
SQLite 20.2 6 5022776 35 2

92,396 different lock objects. UNDEAD should collect the call
stacks for each distinct lock initialization, and also record the
address of every lock acquisition. This explains the significant
performance overhead for this application. However, we expect
that normal applications should not have such extensive lock
acquisitions, such as MySQL and Memcached here. Thus,
UNDEAD’s performance overhead should be totally acceptable.

Table I also helps explain the performance overhead of
Dimmunix as well. To our understanding, Dimmunix imposes
high overhead because it must obtain call stacks of all lock
acquisitions. For applications with a significant number of lock
acquisitions, such as fluidanimate, MySQL, facesim,
and SQLite, Dimmunix imposes significant performance
overhead.

Table I also confirms several design choices employed by
UNDEAD. (1) The number of single-level lock acquisitions
is much larger than the number of nested locks. For instance,
fluidanimate has more than 1.7 billion lock acquisitions,
but with zero nested locks. Similarly, MySQL’s quantity of
single-level lock acquisitions is 22,603 times more than the
number of nested locks. Thus, avoiding the overhead of
obtaining call stacks for first-level locks can greatly reduce
logging overhead. (2) The total number of lock dependencies
is much larger than the number of unique dependencies.
facesim has around 407,902 lock dependencies, but with
only 120 that are unique. Thus, recording only the unique
lock dependencies can largely reduce the detection time and
memory/disk consumption. The mechanism of recording all
lock acquisitions employed by existing work is not suitable
for long-running applications, as the ever-expanding trace will
consume too much memory/disk capacity, and significantly
increases the detection time.

C. Memory Overhead

The physical memory overhead from using Pthreads,
Dimmunix, and UNDEAD is shown in Table II. For small-
footprint applications, such as aget and swaptions, UN-
DEAD may add a high percentage of startup memory overhead
introduced by its recording mechanism, due to utilizing some

TABLE II: MEMORY CONSUMPTION (MB)

Applications Default Dimmunix UNDEAD
blackscholes 612 613 634
bodytrack 33 45 52
canneal 944 943 960
dedup 1643 1630 1654
facesim 324 393 343
ferret 66 69 80
fluidanimate 408 696 426
streamcluster 110 121 155
swaptions 9 9 24
x264 485 487 499
Aget 6 9 21
Apache 4 300 17
Memcached 5 7 15
MySQL-5.6.10 123 143 156
Pbzip2 95 105 113
Pfscan 813 799 838
SQLite 39 41 57
Total 5719 6410 6044

pre-allocated mechanisms inside. However, if we sum the
memory usage across all applications, UNDEAD imposes
only 6% memory overhead when compared to the default
Pthreads library, which is similar to Dimmunix’s memory
overhead.

We further performed another experiment to verify whether
the memory overhead introduced by UNDEAD is stable across
different sizes of input. We verified the memory consumption
of MySQL-5.6.10 server, and showed the results in Figure 7.
The memory consumption of UNDEAD remains almost the
same across varying numbers of requests, where the number
of unique lock dependencies has a similar trend as well.

D. Detection Effectiveness

This section confirms the detection effectiveness of both
UNDEAD and Dimmunix: false negatives and false positives.
We evaluated all applications in Section V-B, as well as
real-world deadlock problems frequently utilized by previous
work [16], [17]. The bug in MySQL-6.0.4 is a synthetic bug
used in existing work [30]. Effectiveness results are shown in
Table III. Those applications without false positives and false

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1"
(104K)"

10"
(105K)"

100"
(125K)"

1000"
(305K)"

10000"
(2M)"

100000"
(20M)"

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

of requests per thread
(# of lock acquisitions)

Fig. 7. Memory consumption of UNDEAD, when sysbench utilizes different
numbers of requests and different numbers of lock acquisitions to exercise the
MySQL-5.6.10 server.

736

TABLE III: COMPARISON OF DETECTION EFFECTIVENESS

Applications # of Cycles Real Deadlocks
Dimmunix UNDEAD (#)

bodytrack 2 0 0
dedup 2 0 0
facesim 1 0 0
ferret 3 0 0
fluidanimate 1 0 0
streamcluster 5 0 0
HawkNL-1.6b3 1 1 1
MySQL-5.6.10 1 2 2
MySQL-6.0.4 2 1 1
pbzip2 1 0 0
SQLite-3.3.3 1 2 2

negatives for both UNDEAD and Dimmunix are not shown in
this table.

In these experiments, UNDEAD reports no false positives,
and identifies all known deadlocks. Thus, UNDEAD is very
effective at detecting deadlocks, although it cannot completely
avoid false positives and false negatives in theory, as discussed
in Section III-D.

In contrast, Dimmunix reports 16 false alarms on evaluated
applications, and misses an actual deadlock in MySQL-5.6.10.
When an application has more than one deadlock, Dimmunix
may only detect one deadlock and then kill the program,
inducing false negatives. Dimmunix may report different results
on different executions, as its monitor thread may check
deadlocks at random points. False positives of Dimmunix are
due to its implementation fault, based on our understanding
of their source code. Dimmunix accidentally has two different
states for the same lock in its Resource Allocation Graph [17],
which mimics the effect of two continuous lock acquisitions
of the same lock from the same thread. Dimmunix treats
this behavior as an irregular lock pattern that can cause a
program to hang, so it reports this to users. This explains why
Dimmunix has many false positives, even when a program (e.g.
fluidanimate) only contains single-level locks.

E. Prevention Effectiveness

We evaluated the effectiveness of UNDEAD’s prevention sys-
tem for applications containing known deadlocks, by comparing
with Dimmunix and the state-of-the-art (DFixer [16]). For
all of these buggy applications, including HawkNL-1.6b3,
SQLite-3.3.3, and MySQL-5.6.10, these three preven-
tion systems can successfully prevent those deadlocks.

As shown in Table IV, the “Merged Locks” column lists the
number of locks that are actually merged by UNDEAD. “Real”
indicates the number of real locks contained in the deadlock
set, while the “Add” column lists the number of locks that
should be additionally merged in order to avoid new deadlocks.
The “Conflict Acqs” column lists the number of lock conflicts
during the execution, with Pthreads (“Orig”) and UNDEAD,
using buggy inputs. UNDEAD adds one additional lock into
the deadlock set for HawkNL-1.6b3 and MySQL-5.6.10
to avoid the problem as shown in Figure 2.

F. Prevention Performance

Figure 6 shows that UNDEAD’s prevention mechanism
imposes little overhead for programs without deadlocks, since

UNDEAD’s overhead with prevention is similar to the one
(“UNDEAD-LOG”) without prevention.

The performance results with deadlocks are shown in
Table IV. When unnecessary invocations of sleep inside these
programs were removed, these executions finished very quickly.
For example, HawkNL and SQLite only execute for less
than 0.002 seconds, which makes the performance comparison
meaninglessly. However, both UNDEAD and DFixer perform
better than Dimmunix, but worse than the original executions
(marked as “Orig”). UNDEAD may introduce some startup
overhead: UNDEAD should read the bug report file, redirect
locks, and check whether a lock operation should be performed
on a shared lock. The number of lock conflicts can be slightly
increased with the prevention system of UNDEAD.

We further confirmed the prevention overhead on normal
executions, which is more important than small inputs. We
utilized sysbench to exercise both MySQL-5.6.10 and
MySQL-6.0.4 with 16 threads and 100, 000 maximum
requests. As shown in Table V: (1) both UNDEAD and DFixer
significantly outperform Dimmunix. The overhead of both
UNDEAD and DFixer is less than 1%, while Dimmunix runs
up to 25× slower. For MySQL-6.0.4, Dimmunix encounters
many false positives caused by the levels of call stacks, and its
performance deteriorates significantly; (2) UNDEAD achieves
similar prevention performance as DFixer, despite its additional
workload such as call stacks fetching and lock redirection. The
comparison between DFixer and UNDEAD is further discussed
in Section VI.

VI. RELATED WORK

A. Detection and Prediction

There are two types of dynamic tools used for detecting
deadlocks. One type is very efficient [22], [31], comparable
to UNDEAD, but which cannot report potential deadlocks. For
instance, Pulse [22] periodically checks whether the system
has been blocked, by checking whether the resource graph
contains a possible cycle.

The other type of detection tools focus on detecting potential
deadlocks that do not occur in the execution. Many works
aim to predict cycles [1], [4], [5], [7], [9], however, these
works typically incur significant performance overhead, as
high as multiple orders of magnitude [1], [8], [9], [10], [32].
For example, Sherlock [10] introduces more than 6× overhead
compared to that of DeadlockFuzzer, while DeadlockFuzzer
itself operates with up to 12× overhead. Wolf [32] reduces
its recording overhead over DeadlockFuzzer by about 20%. In
contrast, UNDEAD exhibits much lower recording overhead
than these tools, a result of its careful design. Also, UNDEAD
imposes low memory overhead by pruning all unnecessary
information during execution.

There exist works that also attempt to utilize scheduling
to trigger deadlock occurrences [1], [2], [8], [9], [10], [33],
[34]. They typically utilize dynamic analysis to identify
potential deadlocks at first, then direct a scheduler to reproduce
these potential deadlocks with high probability. However,
these approaches reduce convenience by adding an additional

737

TABLE IV: CHARACTERISTICS OF UNDEAD’S PREVENTION

Applications Bug ID Time (s) Merged Locks(#) Conflict Acqs(#)
Orig UNDEAD Dimmunix DFixer Real Add Orig UNDEAD

HawkNL-1.6b3 N/A 0.002 0.006 0.007 0.004 2 1 ≤ 2 ≤ 1
SQLite-3.3.3 1672 0.001 0.005 0.006 0.004 2 0 ≤ 1 ≤ 1
MySQL-5.6.10 62614 0.015 0.015 0.031 0.015 3 1 ≤ 6 ≤ 7

TABLE V: NORMALIZED PERFORMANCE AND LOCK CONFLICTS UNDER NORMAL INPUTS

Applications Bug ID Normalized Slowdown(%) Normalized Conflicts(%)
UNDEAD Dimmunix DFixer Orig UNDEAD

MySQL-5.6.10 62614 0.6% 762% 0.4% 100% 109%
MySQL-6.0.4 37080 0.9% 2556% 0.8% 100% 107%

confirmation stage. Armus detects barrier deadlocks on a set of
synchronization models [34]. STEPDAD helps reproduce the
deadlocks inside database problems [35]. The lock confirmation
can serve as a great supplement to UNDEAD, though with a
different focus.

ConTeGe [36] and Omen [37] generate concurrent test cases
toward triggering deadlocks and other concurrency bugs. They
could possibly integrate with UNDEAD’s detection to find
additional deadlock problems.

B. Prevention, Fixing, and Recovery

Some previous work prevents deadlock occurrences by
patching programs, relying on precise signatures of deadlocks
that are difficult or impossible to obtain due to the lack of
efficient detection tools. Gadara [38] synthesizes the Discrete
Control Theory (at source code level) to avoid deadlocks by
inserting some gate locks during compilation, then dynamically
chooses to enforce them at runtime. However, as observed by
DFixer, Gadara can also introduce potential deadlocks, and
it reports a maximum of 18% performance overhead. Lock
capabilities can statically verify a deadlock problem, then
may be used to prevent deadlock occurrences [39]. Various
other works also take similar approaches, such as AFix [12],
CFix [13], Axis [14], Grail [15], and [40], which can introduce
potential deadlocks as well.

Sammati proposes an online prevention system that is not
based on detection results [41]. It can checkpoint the state of
the program upon lock acquisitions, and monitor the possible
cycles during execution. If a deadlock is found, the program
is rolled back to a previous checkpoint, where the program is
re-executed to avoid the susceptible schedule [41]. However,
Sammati may impose more than 100% performance overhead
for some applications.

Similar to Dimmunix, REDACT [42] utilizes a supervisor
controller to prevent deadlocks in database applications. Dif-
ferently, it uses static analysis to find hold-and-wait cycles in
transactions, and feeds the analysis results to the controller.
Afterwards, it utilizes a similar mechanism as that of Dimmunix
to prevent the deadlocks. It delays a transaction if it is involved
in a hold-and-wait cycle.

DFixer [16] is the previous state-of-the-art in the deadlock
prevention. It proposes a lock pre-acquisition idea that enables
one thread involved in a deadlock to acquire all locks in the
same deadlock set at one time. This eliminates the hold-and-
wait condition necessary for a deadlock to occur, which is

similar to UNDEAD’s idea. DFixer also proposes context-aware
conditionals to avoid the introduce of new communication
deadlocks, which may avoid problems as shown in Figure 3.
DFixer has the following significant differences from UNDEAD:
(1) DFixer requires an additional recompilation, which cannot
work on legacy applications without the source code available.
In contrast, UNDEAD directly works on commercial off-the-
shelf (COTS) binaries without recompilations. (2) DFixer
requires precise inputs on deadlocks, where it may not avoid
deadlocks caused by non-instrumented statements. UNDEAD
proposes a variable-based mechanism that can prevent all
deadlocks related to known lock variables, preventing deadlocks
based on incomplete trace. (3) DFixer may require the special
handling for complexed situations, such as multiple deadlocks
caused by the same set of locks, or irregular lock patterns.
On the contrary, UNDEAD’s mechanisms can handle complex
situations easily, but with possible performance compromise.

VII. CONCLUSION

This paper introduces UNDEAD, a novel system that can
efficiently detect and prevent deadlocks in production software.
As a detection tool, UNDEAD only imposes 3% runtime
overhead and 6% memory overhead. Evaluation results show
that UNDEAD detects all known deadlocks, while reporting
no false positives. UNDEAD also proposes a novel idea of
“merging locks” to prevent deadlock problems temporarily,
providing a “band-aid” for production software. UNDEAD’s
prevention system can automatically read detection results, and
strengthen buggy programs by preventing potential deadlocks
in future executions. UNDEAD is available at https://github.
com/UTSASRG/UnDead.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for their
valuable suggestions and feedback that helped improve this
paper. The work is supported by UTSA startup package, Google
Faculty Award, and the National Science Foundation under
Grants No. 1566154. The work is also supported by National
Natural Science Foundation of China (NSFC) (grant No.
61502465), National 973 program of China (2014CB340702),
and Youth Innovation Promotion Association of the Chinese
Academy of Sciences (YICAS) (2017151).

738

REFERENCES

[1] P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized
dynamic program analysis technique for detecting real deadlocks,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09. New
York, NY, USA: ACM, 2009, pp. 110–120. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542489

[2] Y. Cai, S. Wu, and W. K. Chan, “ConLock: A constraint-based
approach to dynamic checking on deadlocks in multithreaded programs,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 491–
502. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568312

[3] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XIII. New York, NY, USA: ACM, 2008, pp. 329–339.
[Online]. Available: http://doi.acm.org/10.1145/1346281.1346323

[4] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for Java,” in Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and
Implementation, ser. PLDI ’02. New York, NY, USA: ACM, 2002, pp.
234–245. [Online]. Available: http://doi.acm.org/10.1145/512529.512558

[5] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of
race conditions and deadlocks,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’03.
New York, NY, USA: ACM, 2003, pp. 237–252. [Online]. Available:
http://doi.acm.org/10.1145/945445.945468

[6] A. Williams, W. Thies, and M. D. Ernst, “Static deadlock
detection for Java libraries,” in Proceedings of the 19th European
Conference on Object-Oriented Programming, ser. ECOOP’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 602–629. [Online]. Available:
http://dx.doi.org/10.1007/11531142_26

[7] K. Havelund, “Using runtime analysis to guide model checking
of Java programs,” in Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification. London,
UK, UK: Springer-Verlag, 2000, pp. 245–264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645880.672085

[8] P. Joshi, M. Naik, K. Sen, and D. Gay, “An effective dynamic analysis
for detecting generalized deadlocks,” in Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software
engineering. ACM, 2010, pp. 327–336.

[9] Y. Cai and W. K. Chan, “Magicfuzzer: Scalable deadlock detection
for large-scale applications,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 606–616. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337294

[10] M. Eslamimehr and J. Palsberg, “Sherlock: scalable deadlock detection
for concurrent programs,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 353–365.

[11] Z. D. Luo, R. Das, and Y. Qi, “Multicore SDK: A practical and efficient
deadlock detector for real-world applications,” in 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation,
March 2011, pp. 309–318.

[12] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated
atomicity-violation fixing,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 389–400. [Online].
Available: http://doi.acm.org/10.1145/1993498.1993544

[13] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 221–236. [Online].
Available: http://dl.acm.org/citation.cfm?id=2387880.2387902

[14] P. Liu, O. Tripp, and C. Zhang, “Grail: Context-aware fixing of
concurrency bugs,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 318–329. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635881

[15] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th
International Conference on Software Engineering, ser. ICSE ’12.

Piscataway, NJ, USA: IEEE Press, 2012, pp. 299–309. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337259

[16] Y. Cai and L. Cao, “Fixing deadlocks via lock pre-acquisitions,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp. 1109–
1120. [Online]. Available: http://doi.acm.org/10.1145/2884781.2884819

[17] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea, “Deadlock immunity:
Enabling systems to defend against deadlocks,” in Proceedings of the 8th
USENIX conference on Operating systems design and implementation.
USENIX Association, 2008, pp. 295–308.

[18] Y. Nir-Buchbinder, R. Tzoref, and S. Ur, “Deadlocks: From exhibiting
to healing,” in Runtime Verification, M. Leucker, Ed. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 104–118. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-89247-2_7

[19] D. Hovemeyer and W. Pugh, “Finding concurrency bugs in Java,” in In
Proceedings of the PODC Workshop on Concurrency and Synchronization
in Java Programs, 2004.

[20] GLIBC Developers, “Backtraces - glibc,” http://www.gnu.org/software/
libc/manual/html_node/Backtraces.html#Backtraces.

[21] D. Gross, “TLS performance overhead and cost on gnu/linux,” http:
//david-grs.github.io/tls_performance_overhead_cost_linux, 2016.

[22] T. Li, C. S. Ellis, A. R. Lebeck, and D. J. Sorin, “Pulse: A
dynamic deadlock detection mechanism using speculative execution,”
in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 3–3. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1247360.1247363

[23] M. M. u. Alam, T. Liu, G. Zeng, and A. Muzahid, “Syncperf:
Categorizing, detecting, and diagnosing synchronization performance
bugs,” in Proceedings of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17. New York, NY, USA: ACM, 2017, pp. 298–
313. [Online]. Available: http://doi.acm.org/10.1145/3064176.3064186

[24] Authors of Dimmunix, “Dimmunix: Deadlock immunity system
for Java/C/C++ software,” https://code.google.com/archive/p/dimmunix,
2016.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72–81.

[26] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[27] “Pure python memcached client,” https://pypi.python.org/pypi/
python-memcached.

[28] SQL Developers., “How sqlite is tested,” https://www.sqlite.org/testing.
html.

[29] ab Developers., “ab - apache http server benchmarking tool,” https:
//httpd.apache.org/docs/2.4/programs/ab.html.

[30] T. W. Zhen Yu, Xiaohong Su and P. Ma, “Mocklinter: Linting mutual
exclusive deadlocks with lock allocation graphs,” International Journal
of Hybrid Information Technology, vol. 09, no. 3, pp. 355–374, 2016.

[31] C. Zamfir and G. Candea, “Low-overhead bug fingerprinting for
fast debugging,” in International Conference on Runtime Verification.
Springer, 2010, pp. 460–468.

[32] M. Samak and M. K. Ramanathan, “Trace driven dynamic deadlock
detection and reproduction,” in Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’14. New York, NY, USA: ACM, 2014, pp. 29–42. [Online].
Available: http://doi.acm.org/10.1145/2555243.2555262

[33] S. Bensalem and K. Havelund, “Dynamic deadlock analysis of multi-
threaded programs,” in Proceedings of the First Haifa International
Conference on Hardware and Software Verification and Testing, ser.
HVC’05. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 208–223.
[Online]. Available: http://dx.doi.org/10.1007/11678779_15

[34] T. Cogumbreiro, R. Hu, F. Martins, and N. Yoshida, “Dynamic deadlock
verification for general barrier synchronisation,” in Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 2015, pp. 150–160.

[35] M. Grechanik, B. M. Hossain, and U. Buy, “Testing database-centric
applications for causes of database deadlocks,” in Software Testing,
Verification and Validation (ICST), 2013 IEEE Sixth International
Conference on. IEEE, 2013, pp. 174–183.

[36] M. Pradel and T. R. Gross, “Fully automatic and precise detection of
thread safety violations,” in Proceedings of the 33rd ACM SIGPLAN

739

Conference on Programming Language Design and Implementation, ser.
PLDI ’12. New York, NY, USA: ACM, 2012, pp. 521–530. [Online].
Available: http://doi.acm.org/10.1145/2254064.2254126

[37] M. Samak and M. K. Ramanathan, “Multithreaded test synthesis for
deadlock detection,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’14. New York, NY, USA: ACM, 2014,
pp. 473–489. [Online]. Available: http://doi.acm.org/10.1145/2660193.
2660238

[38] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke, “Gadara:
Dynamic deadlock avoidance for multithreaded programs.” in OSDI,
vol. 8, 2008, pp. 281–294.

[39] C. S. Gordon, M. D. Ernst, and D. Grossman, “Static lock capabilities for
deadlock freedom,” in Proceedings of the 8th ACM SIGPLAN workshop

on Types in language design and implementation. ACM, 2012, pp.
67–78.

[40] Y. Lin and S. S. Kulkarni, “Automatic repair for multi-threaded programs
with deadlock/livelock using maximum satisfiability,” in Proceedings of
the 2014 International Symposium on Software Testing and Analysis,
ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 237–247.
[Online]. Available: http://doi.acm.org/10.1145/2610384.2610398

[41] H. K. Pyla and S. Varadarajan, “Avoiding deadlock avoidance,” in
Proceedings of the 19th international conference on Parallel architectures
and compilation techniques. ACM, 2010, pp. 75–86.

[42] M. Grechanik, B. Hossain, U. Buy, and H. Wang, “Preventing database
deadlocks in applications,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 356–366.

740

